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ABSTRACT 

Purpose: Artificial Intelligence (AI) in agriculture has become a potential 
opportunity to enhance resource use and crop output, and especially in 
controlled-environment cropping. This paper introduces an intelligent, 
greenhouse prototype and its modelling and its testing in order to maximize 
the production of vegetable crops in the tropical world. 

Subjects and Methods: It consists of the system that combines Internet of 
Things (IoT) with machine learning algorithms, including Random Forest 
and Artificial Neural Networks (ANN), engineered to control microclimatic 
factors including temperature and humidity, soil moisture, and intensity of 
light. 

Results: An experimental work was implemented on a model crop lettuce 
wherein the prototypical greenhouse was piloted in a 4 x 6-meter of lettuce 
grown in a chamber system under a duration of 45 days. According to the 
findings, greenhouse managed by AI allowed the reduction of water 
consumption by 39.6 percent and energy consumption by 12.7 percent in 
comparison with the traditional control, and increased the fresh weight and 
the number of leaves in crops by 28.4 percent. 

Conclusions: These results emphasize the usefulness of AI in the 
attainment of sustainable farming systems through increased productivity 
but low use of inputs. The paper comes to the conclusion that AI-based smart 
greenhouse systems show great potential to be adopted in tropical areas, but 
additional studies are necessary to verify scalability, crop variety, and 
economic viability. 
 

 
INTRODUCTION 
 

Rapid global population growth and increasing demand for food are driving the need for more 
efficient, sustainable, and climate-adaptive agricultural systems (FAO, 2021). One rapidly 
developing approach is the implementation of smart greenhouses, greenhouses equipped with 
sensors, actuators, and automated control systems to regulate environmental parameters such as 
temperature, humidity, lighting, and plant nutrition (Kakani et al., 2020; Ghiasi et al., 2023; 
Shamshiri et al., 2018). This technology enables farmers to increase productivity while reducing 
the use of resources such as water and energy. 

Although greenhouse technology has long been recognized, many conventional systems still rely 
on manual controls, making them prone to inefficiencies and inconsistent crop yields (Shamshiri 
et al., 2018; Argento et al., 2024). Therefore, the integration of Artificial Intelligence (AI) into 
smart greenhouses is necessary to support real-time, data-driven decision-making processes. AI 
algorithms, such as machine learning and deep learning, can be used to predict crop needs, detect 
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pests and diseases, and optimize resource use through adaptive control systems (Liakos et al., 
2018; Kowalska & Ashraf, 2023). 

Several studies have shown that the application of AI in precision agriculture can increase 
productivity by 20–30% through improved water and fertilizer use efficiency (Patil & Kale, 2016; 
Kamilaris & Prenafeta-Boldú, 2018). Furthermore, this technology also offers the potential to 
reduce environmental impact through more controlled systems and minimal waste. However, the 
implementation of this system in developing countries, including Indonesia, still faces obstacles 
in terms of investment costs, availability of digital infrastructure, and technological literacy 
among farmers (Putra et al., 2022; Rufaidah et al., 2023). 

Based on these conditions, this research focuses on the development of an AI-based smart 
greenhouse system designed to optimize vegetable production through automated control of 
environmental parameters, analysis of plant growth data, and prediction of crop yields. 
Therefore, this research is expected to contribute to the development of smart agriculture that is 
more efficient, sustainable, and adaptable in various regions, particularly in rural areas with 
limited resources. 

METHODOLOGY 
 
This research used an applied experimental approach to design, implement, and test an Artificial 
Intelligence (AI)-based smart greenhouse system. This system was developed through the 
integration of IoT sensors, actuators, and machine learning algorithms designed to automatically 
monitor and control environmental conditions. Some of the sensors used included temperature, 
air humidity, soil moisture, light intensity, and CO₂ concentration. All sensor data was sent in 
real time to a cloud-based server via a wireless network, where it was analyzed by the AI algorithm 
to provide control decisions. Actuators, including irrigation pumps, ventilation fans, and LED 
lights, were used to adjust environmental conditions according to system recommendations. 

The AI algorithm used a supervised learning approach with Random Forest and Artificial Neural 
Network (ANN) models. This model was trained using historical data covering environmental 
parameters, plant growth, and yields, enabling it to predict plant needs such as irrigation and 
lighting, while also providing recommendations for optimal environmental settings to increase 
productivity. 

Field testing was conducted by constructing a 4x6 meter greenhouse prototype on an 
experimental plot, with lettuce (Lactuca sativa) as the primary crop. Lettuce was selected based 
on its relatively short harvest cycle, allowing for system evaluation over multiple growing seasons. 
Testing was conducted over three growing cycles (approximately 90 days) to compare the 
productivity of the AI-based smart greenhouse system with that of a conventional greenhouse. 
Data collected included environmental parameters (temperature, humidity, light, CO₂), water 
and energy consumption, plant growth (height, number of leaves, and biomass), and crop yield 
(fresh weight per square meter). 

Data analysis was performed by comparing the test results between the AI-based smart 
greenhouse and the conventional greenhouse. An independent t-test was used to test the 
significance of differences in productivity, water use efficiency, and energy consumption between 
the two systems. Furthermore, the performance of the AI algorithm was evaluated using 
prediction accuracy (R²) and error metrics such as Root Mean Square Error (RMSE). Through 
this method, the research is expected to provide a comprehensive overview of the effectiveness of 
AI implementation in smart greenhouses to increase vegetable production while optimizing 
resource use.  

RESULTS AND DISCUSSION 
 

The contemporary agribusiness faces some significant challenges such as reduction in the size of 
land available to grow anything, the deterioration of climate and the increased global food 
demand. Horticulture, primarily the cultivation of vegetables, is central to the Indonesia food 
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system to address the nutritional needs in the country; however, its production mainly depends 
on the current weather conditions and classical farming practices (BPS, 2022). Such a pulsation 
has led to the emergence of greenhouse systems, but the typical designs are often limited in terms 
of low water- and energy-intensity and their limited control over microclimate (Shamshiri et al., 
2018). Introducing Artificial Intelligence (AI) to the management of smart greenhouses has 
significant potential since in this case, the operation can be controlled in real-time and decision-
making functions can be performed automatically to regulate irrigation, lighting, and ventilation. 
Earlier works observed that AI-driven control can help optimize crop yield by 20 30 % and reduce 
water use by around 40 % (Patil & Kale, 2021). Nevertheless, most of the studies that have been 
carried out are laboratory investigations or in developed areas and the real implementation in 
tropical regions, especially Indonesia, are under-represented. The current study thus aims at 
piloting AI-driven smart greenhouse technology on lettuce (Lactuca sativa) with a tropical 
environment. The core question to be answered will be the impact of the system towards the crop 
productivity, water-use efficiency, and energy requirement compared to the configuration of a 
traditional greenhouse. 

Table 1. Environmental Parameters 

Parameter 
Smart Greenhouse 

(Avg.) 
Conventional Greenhouse 

(Avg.) 
Optimal Range for 

Lettuce 
Temperature (°C) 24.8 ± 1.2 28.3 ± 2.5 20–26 
Humidity (%) 72.5 ± 5.3 64.1 ± 7.8 65–80 
Light Intensity 
(lux) 

11,500 ± 1,200 9,300 ± 1,800 10,000–12,000 

CO₂ (ppm) 470 ± 35 410 ± 40 400–800 

This data analysis shows that the smart greenhouse system can support environmental 
parameters, both more consistently and closer to the optimum range, than the traditional 
greenhouses can. This finding however needs also to be placed under review. The temperature of 
the smart greenhouse (24.8 + 1.2 o C) belongs to the ideal range of the growth of lettuce, in 
traditionally structured greenhouses the temperature values are slightly higher (28.3 +/- 2.5 o C), 
and even exceed the optimal level. This shows that the smart control system proves to be more 
efficient in averting heat stress, which may obstruct photosynthesis and diminish the quality of 
the crop production. Regarding humidity, the smart greenhouse also had an average of the 
humidity of 72.5 5.3%, which is within the desired limit of 65- 80. On the contrary, the humidity 
in traditional greenhouses (64.1 +/- 7.8 %) was either close to the lower limit or went below it, 
which could lead to an excessive transpiration process and to a lack of water use efficiency. 

The smart greenhouse had average light intensity of 11,500 o 1,200 lux, which was well within the 
optimal of 10, 000 to 12,000 lux. In the interim, the standard greenhouse attained 9,300 +/- 
1800 lux which was not sufficient as per the stipulated requirement. This situation may affect 
photosynthesis water concentration, thereby, restricting biomass. Both systems had a 
concentration of CO 2 within the optimum range (400 ppm;800 ppm). Nonetheless, the 
greenhouse smart (470 + /- 35 ppm) was more consistent compared to the greenhouse 
conventional (410 +/ -40 ppm), but both are modest relative to CO 2 enrichment rate of most of 
the developed world that has recorded improved productivity. 

In general, the performance of smart greenhouses was more consistent, and the maintenance of 
plant physiological states of lettuce plants was made possible. At the same time, this 
interpretation is not the kind of interpretation that cannot waive some of the critical aspects, such 
as whether the differences noticed are significant and remain across seasons, and the ratio of the 
additional operational cost of using the smart system to the gain in yield. The benefits of a more 
stable microenvironment cannot be used as the success of smart greenhouses without the analysis 
of productivity and economic efficiency benefits. 

Table 2. Water and Energy Efficiency 

Variable 
Smart 

Greenhouse 
Conventional 
Greenhouse 

Efficiency (%) 
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Water consumption (L/kg 
yield) 

28.4 46.7 
39.2% less 

water 
Energy consumption 
(kWh/cycle) 

112.5 128.9 
12.7% less 

energy 

The smart greenhouse reportedly cut water use by nearly 40% through AI-based predictive 
irrigation, with additional energy savings from operating fans and lighting only when needed. 
This is a promising result, but it needs tighter articulation and evidence. First, specify the baseline 
and unit of comparison—e.g., liters m⁻² day⁻¹ relative to a time-clock schedule or farmer 
practice—so “40%” is interpretable and reproducible. Clarify the control inputs the AI used (soil-
moisture trends, evapotranspiration estimates, weather forecasts, crop stage) and the decision 
logic (e.g., model-predictive control, reinforcement learning, or supervised thresholds). 
Reporting absolute volumes and confidence intervals, normalized by yield (e.g., grams of fresh 
weight per liter), will show whether savings came without a hidden yield penalty. It is also 
important to state how leachate/runoff was measured, because reductions in irrigation are 
meaningful only if root-zone salinity, pH, and electrical conductivity stayed within agronomic 
limits. 

Energy reductions should be presented in kWh m⁻² and kWh kg⁻¹ produce, with the control 
strategy for fans and lighting tied to agronomic targets such as vapor-pressure deficit (for 
ventilation) and photosynthetic photon flux density or daily light integral (for lighting). On-
demand operation must demonstrate that microclimate stability was not compromised—short 
cycling of fans or excessive light dimming can induce thermal or photobiological stress. To 
strengthen causality, document the experimental design (replicated bays, cross-over trials, or 
multi-season runs), verify that outside weather and cultivar effects were balanced, and include 
statistical tests of the observed differences. Finally, discuss operational risks and economics: 
sensor drift, communication failures, or model miscalibration can erode savings, so the system 
should include failsafes, periodic recalibration, and a simple manual override. A brief cost–
benefit analysis (capital, maintenance, payback) will make the claimed resource efficiencies 
actionable for growers. 

Table 3. Plant Growth and Productivity 

Plant Indicator Smart Greenhouse Conventional Greenhouse 
Average height (cm) 21.3 ± 2.1 17.6 ± 2.4 

Number of leaves 18.5 ± 3.2 14.7 ± 3.5 
Fresh weight (g/plant) 182.4 ± 15.7 142.8 ± 18.3 
Productivity (kg/m²) 3.65 2.85 

The results indicate that lettuce cultivated in the smart greenhouse exhibited significantly 
stronger vegetative growth, as reflected by an average fresh weight per plant that was 
approximately 28% higher than that observed in conventional greenhouse systems. This 
substantial improvement underscores the effectiveness of AI-based environmental control in 
creating conditions that are consistently aligned with the physiological needs of the crop. By 
maintaining temperature, humidity, light intensity, and CO₂ within or near the optimal ranges, 
the smart greenhouse minimized abiotic stress factors that often hinder growth in conventional 
setups. The 28% increase in biomass is not merely a quantitative difference but also a qualitative 
indicator of enhanced nutrient uptake, more efficient photosynthesis, and improved water-use 
efficiency. However, while these findings highlight the clear agronomic benefits of AI-driven 
systems, a critical perspective should consider potential trade-offs, such as the energy costs of 
running automated sensors and actuators, the scalability of the system for large-scale production, 
and whether similar growth advantages would be sustained across different seasons or crop 
varieties. Thus, while the evidence strongly supports the role of AI in optimizing growth 
conditions for lettuce, further studies are needed to evaluate long-term productivity, economic 
feasibility, and environmental sustainability. 

AI-Driven Smart Greenhouse: Enhancing Efficiency and Productivity in Tropical 
Vegetable Cultivation 
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Findings have shown that the application of an artificial intelligence based smart greenhouse 
system has significant environmental management capabilities in controlling the environment as 
well as crop yield compared to traditional management of greenhouse environments. The fact the 
system has managed to keep both temperature and humidity in the optimal range to promote 
growth of lettuce shows the power of the machine learning algorithm when modifying irrigation, 
ventilation and lighting as needed. This observation is in line with a previous study conducted by 
Shamshiri et al. (2018) who pointed out that accurate environmental control was arguably the 
most important aspect that can impact the yield of greenhouse crops. 
 
The meaningfully lower amount of water used, that is, nearly 40 percent lower than in 
conventional systems, shows that real-time weather control and the prediction of irrigation 
control systems that rely on real-time data given by sensors and analyzed through the application 
of AI are likely to be very effective even in the tropical climate. This conforms to Patil and Kale 
(2021) that smart irrigation technology with AI can cut down water consumption to 30-45 percent 
with no adverse effects on crops growth. Additionally, the decreased water use is also of special 
importance in the areas experiencing a growing shortage of water, therefore, not only being a 
technological breakthrough, but also an environmentally conscious method of agriculture. 
 
There was also optimization of energy consumption with a 12.7 percent reduction on each 
production cycle. Although such percentage is smaller than water efficiency, it shows how AI can 
help reduce unwarranted work of actuators like fans or light respectively. The same tendencies 
were also observed by Khan et al. (2023) who determined that adaptive AI-based energy 
management could reduce greenhouse power consumption by 10%-15%. Even though the 
performance is average, the series impact will be relatively substantial over time and create 
operational cost savings. 
 
The results can be discussed as especially interesting in regard to productivity. Lettuce plants 
processed in AI-regulated conditions were 28% heavier in terms of fresh weight than similar 
convention ones. This result validates the hypothesis according to which real-time modification 
of microclimatic symptoms is directly adding value in terms of the improvement of plant growing. 
The larger amount of leaves and more biomass shows that AI does not just guarantee the survival 
but also, actively, stimulates optimal physiological growth. Analogous results have been 
documented by Egi et al. (2022) claiming that AI-aided greenhouses increased tomato yields by 
25%, but they reduced the input use. 
 
Notably, this work will be the first to apply AI-based smart greenhouse to the tropical climate, 
where environmental variations can be more problematic to manage compared with the 
temperate climate. Although much of previous study was conducted under controlled conditions 
in laboratory or temperate environment, this finding indicates that the technology can well work 
in Indonesia and other like conditions (Supari et al., 2017). This will be a significant move, one 
which will be important in the large scale implementation of smart agriculture solutions in 
developing nations. 

However, it should be considered that there are certain limitations. These experiments were 
carried out in the relatively small size (4 x 6 meters) and only lettuce was considered as the model 
crop. Fine-tuning further research is required that can check whether the system can ever be 
expanded to accommodate bigger areas of production and to other high value crops as those ones 
that might have varying environmental requirements. Also, Random Forest and ANN models 
yielded a reasonable result; however, in the future, one may circle around the hybrid AI models 
that utilize predictive climate modeling and plant growth simulations to increase the accuracy. In 
general, the findings confirm that AI-derived smart greenhouse systems can become a 
prospective solution to meeting the goal of increased productivity, resource availability, and 
sustainability production of vegetables in tropical climates. 

CONCLUSION 

This study demonstrates that the integration of Artificial Intelligence into smart greenhouse 
systems offers significant advantages in optimizing vegetable production, particularly in tropical 
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regions. The AI-based system successfully maintained stable environmental conditions, reduced 
water consumption by nearly 40%, lowered energy usage by 12.7%, and increased lettuce yield by 
28% compared with conventional greenhouse management. These improvements highlight the 
potential of AI-driven automation to address key agricultural challenges, including resource 
efficiency, sustainability, and food security. 

The results confirm that real-time monitoring and predictive control can enhance crop growth 
while minimizing input usage, making smart greenhouses a viable solution for improving 
productivity in resource-constrained settings. However, scalability and adaptability to different 
crop varieties remain areas for further investigation. Future research should focus on larger-scale 
implementations, integration with renewable energy systems, and testing across a wider range of 
high-value crops. 
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