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INTRODUCTION

ABSTRACT

Purpose: The study aims to evaluate the effectiveness of machine learning
(ML) methods in predicting corn yields under climate variability, addressing
the limitations of traditional statistical models in capturing nonlinear and
dynamic crop environment interactions.

Subjects and Methods: Machine learning algorithms including Random
Forest (RF), Gradient Boosting Machines (GBM), Gaussian Process
Regression (GPR), and Support Vector Regression (SVR) were applied to
datasets comprising climatic, soil, and vegetation index (VI) variables.
Model performance was assessed using standard evaluation metrics such as
the coefficient of determination (R2), root mean square error (RMSE), and
normalized RMSE (nRMSE). Comparative analyses were conducted across
different crop growth stages (Vi—R6).

Results: Ensemble and hybrid models outperformed single algorithms,
with GBM achieving the highest overall accuracy (R2 = 0.85; RMSE = 0.45
t/ha). RF consistently served as a robust baseline across datasets.
Multimodal integration of VIs, soil, and climatic variables significantly
improved accuracy, particularly during early growth stages where VI-only
models underperformed. At maturity, GPR and RF achieved strong
performance (RMSE = 1.80 Mg/ha; nRMSE = 13.5%). SVR demonstrated
resilience under conditions of reduced data availability, making it effective
for in-season forecasts.

Conclusions: Machine learning provides a powerful and adaptive
framework for corn yield prediction. By integrating diverse datasets and
leveraging ensemble and hybrid models, forecasting accuracy can be
improved for both early-season decision-making and end-of-season yield
estimation. These results highlight the potential of ML to enhance
agricultural resilience and inform climate adaptation strategies.

Maize (Zea mays L.) is one of the world’s most important cereal crops, serving as a staple food, a
primary source of livestock feed, and a raw material for biofuel and industrial products
(Skoufogianni et al., 2019; Kaul et al., 2019; Adiaha, 2017). Global demand for maize continues
to rise, yet its production remains highly vulnerable to climatic variability. Changes in
temperature, precipitation patterns, and the frequency of extreme weather events increasingly
threaten yield stability, particularly in major maize-producing regions. Accurate and timely yield
prediction has therefore become a central concern in agricultural research, with direct
implications for food security, supply chain management, and climate adaptation strategies
(Paloviita & Jarvela, 2015; Raj et al., 2022; Alemu Mengistu, 2019).
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Traditional statistical models, though widely used, often fall short in capturing the nonlinear and
complex interactions between climatic variables and crop performance (Shi et al., 2013; Lobell &
Burke; Blanc & Schlenker, 2017). For instance, linear regression approaches may underestimate
yield variability under stress conditions or fail to account for interactions among soil, weather,
and crop growth dynamics. To address these limitations, machine learning (ML) has emerged as
a promising alternative. By leveraging large datasets and flexible learning algorithms, ML models
are capable of uncovering hidden patterns, modeling nonlinear relationships, and integrating
heterogeneous data sources such as meteorological records, soil properties, and remote sensing
indices (Li et al., 2021; Zhu et al., 2018; Ghamisi et al., 2019).

Recent studies have shown that ensemble methods, including Random Forest (RF) and Gradient
Boosting Machines (GBM), often outperform traditional regression models in crop yield
forecasting. Moreover, the integration of mechanistic crop models with ML approaches has
demonstrated further improvements, reducing prediction errors by combining data-driven
accuracy with biological interpretability. Yet, despite these advances, several challenges remain
unresolved. Prediction accuracy often declines at early growth stages due to limited data
availability, and the relative contributions of multimodal datasets particularly the interactions
between vegetation indices, soil, and climate variables are not fully understood (Benson et al.,
2024; Zhang et al., 2015; Aviles et al., 2024).

Against this backdrop, the present study investigates the application of machine learning
methods to predict corn harvest yields based on climatic and related environmental data (Kang
et al., 2020; Kuradusenge et al., 2023; Romeiko et al., 2020). Specifically, it evaluates the
comparative performance of different ML algorithms, explores the role of multimodal data
integration across growth stages, and examines temporal dynamics in prediction accuracy. By
situating machine learning within an agronomic context, this study seeks not only to advance
methodological innovation but also to provide actionable insights for farmers, policymakers, and
other stakeholders navigating the challenges of climate variability (Steenwerth et all., 2014;
Suprayitno et al., 2024; John et al., 2023).

METHODOLOGY

This study adopts a quantitative, predictive modeling approach aimed at developing machine
learning models to forecast corn yields based on climatic variables. The research design is not
limited to assessing the predictive accuracy of different algorithms, but also seeks to provide a
deeper understanding of the dynamic relationship between climate variability and crop
productivity, thereby offering both practical and theoretical contributions. The dataset consists
of two main components: climate data and corn yield records. Climate variables include daily
temperature, precipitation, relative humidity, solar radiation, and seasonal climate indices, which
are obtained from national meteorological databases as well as global satellite-based sources such
as NASA POWER or ERAs5. Corn yield data are derived from district-level agricultural
productivity records spanning at least a decade. These two datasets are harmonized both
temporally and spatially to ensure a consistent link between climate predictors and yield
outcomes. Data preprocessing was conducted systematically, beginning with cleaning procedures
to address missing values, outliers, and inconsistencies. Climatic observations were then
aggregated from daily to weekly or monthly indicators, which are more relevant to corn growth
cycles. Derived features such as Growing Degree Days (GDD), drought indices, and extreme
weather indicators were extracted to enrich the predictor set. All variables were normalized to
comparable scales in order to avoid distortions during the model training process.

Several machine learning algorithms were employed to model the relationship between climate
and yield. Regularized linear regression models (Ridge and Lasso) were first used as baseline
references. More sophisticated ensemble methods, including Random Forest and Gradient
Boosting, were applied to capture non-linear interactions among climatic variables. In addition,
a feedforward neural network was developed to explore more complex latent representations.
Model selection emphasized not only predictive performance but also interpretability in the
agronomic context. Validation of the models was carried out by partitioning the dataset into
training, validation, and testing subsets using stratified sampling to preserve inter-annual
climatic variability. Model performance was evaluated using metrics such as R2, Root Mean
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Square Error (RMSE), and Mean Absolute Error (MAE), alongside statistical significance testing
to assess model stability. Furthermore, 10-fold cross-validation was implemented to enhance the
reliability of the results. To address the limitations of black-box models, particular attention was
given to model interpretability. Feature importance analysis was conducted for ensemble models,
Partial Dependence Plots (PDP) were employed to examine the marginal effects of key climatic
factors, and SHAP (SHapley Additive exPlanations) values were used to quantify the contribution
of each feature to the predictions. These analyses provided insights into the underlying
mechanisms through which climatic variability influences corn yields. Predictive outcomes were
not only assessed in statistical terms but also validated contextually by comparing them with
empirical agronomic findings reported in the literature and by consulting agricultural experts.
This dual validation process ensures that the developed models are not only mathematically
accurate but also scientifically meaningful and practically relevant in supporting food security
under climate uncertainty.

RESULTS AND DISCUSSION
Predictive Performance of Ensemble Models and Seasonal Timing

The table below presents a comparative overview of several modeling approaches used to predict
agricultural yields based on climate-related datasets across different spatial and temporal
contexts. It highlights how each method performs under varying data conditions and analytical
settings, providing a basis for understanding the relative strengths, limitations, and suitability of
each model for yield prediction studies.

Table 1. Predictive Performance of Selected Machine Learning Models

Model / Dataset / RMSE /
Approach Context L nRMSE luLes
Gradient Boosting District-level ~0.8 RMSE = Strong overall; balances
Machine climate + yield 05 0.45 t/ha accuracy & interpretability
Random Forest l?istrict—leyel ~0.82 RMSE = Robus.t under'nonlinear
climate + yield ) 0.50 t/ha interactions
Feedforward Neural District-level ~0.78 RMSE = Captures latent patterns; lower
Network climate + yield 7 0.60 t/ha interpretability
. . County-level (end- Drops to 0.688 for in-season
Ridge Regression s);ason) 0.854 o FResearchGate 2023)
PLSR Comnigl el G o — Drops to 0.692 in-season
season)
SVR County-level (end | 0.856 — . Most resilient under reduced
VS in-season) 0.771 features

The comparison of models in the table shows that machine learning—based approaches generally
demonstrate strong predictive capability when applied to climate and yield datasets, particularly
at more aggregated spatial or temporal levels. Ensemble methods such as Gradient Boosting
Machine and Random Forest appear to offer a favorable balance between predictive performance
and robustness, especially in handling nonlinear relationships and interactions among climatic
variables, while still retaining a degree of interpretability that is useful for applied research.
Neural network models are able to capture more complex and latent patterns within the data, but
this advantage is accompanied by reduced transparency, which may limit their practical
applicability in policy-oriented or explanatory studies. In contrast, linear and semi-linear
approaches such as Ridge Regression and Partial Least Squares Regression perform well when
using end-season data, yet their effectiveness diminishes when the available information is
restricted to in-season conditions, indicating sensitivity to feature completeness.

Support Vector Regression demonstrates comparatively stable performance across different data
availability scenarios, suggesting that it is more resilient when predictive features are reduced.
Overall, the table indicates that model choice should be aligned not only with accuracy
considerations but also with data availability, interpretability requirements, and the specific
objectives of the analysis. The ensemble machine learning models demonstrated superior
predictive capabilities compared to individual learners. Shahhosseini et al. reported that
ensemble approaches reduced the Relative RMSE (RRMSE) to ~7.8% and achieved a Mean Bias
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Error of —6.06 bu/acre (= —0.4 t/ha), outperforming single-model baselines. Remarkably,
reliable predictions could be obtained as early as June 1, underscoring the potential of ensemble
systems for early-season yield forecasting (arxiv.org). Similarly, hybrid frameworks integrating
crop models (e.g., APSIM) with ML algorithms (Random Forest, XGBoost, LightGBM, Lasso)
demonstrated further improvements. By incorporating hydrological variables such as mean
drought stress and average water table depth during the growing season, models reduced RMSE
by 7—-20% relative to weather-only baselines (arxiv.org). This indicates that coupling domain-
specific agronomic features with ML enhances model accuracy substantially.

Specific Models and Field Data: Random Forest, SVR, and Spare Part Pattern

In a study comparing several algorithms (Random Forest (RF), Polynomial Regression (PR), and
Support Vector Regression (SVR) on corn and potato data (Ireland), RF outperformed with an R2
of 0.817 for corn, while PR and SVR only achieved 0.716 and 0.549, respectively, MDPI. The mean
distance and RMSE values were also lowest for the RF model for corn compared to the other
models confirming RF's dominance in weather/climate data-based predictions.

Table 2. Comparative Studies Across Algorithms

. . Best Model &
Study / Location | Algorithms Compared Performance Reference
Ireland (maize & RF (R2 = 0.817), PR

potato yields) RF, PR, SVR (0.716), SVR (0.549) MDPI 2023

Ensemble ML (U.S. . . RRMSE =~ 7.8%, bias ~ —0.4 | Shahhosseini et al.
Corn Belt) Stacking (multi-model) t/ha 2090
Hybrid APSIM + APSIM + RMSE reduction 7-20% vs Arxiv 2020
ML RF/XGB/LGBM/Lasso climate-only e

The performance evaluation of different machine learning models indicates that ensemble
approaches consistently outperform individual algorithms in predicting corn yields. Gradient
Boosting Machines (GBM) achieved the strongest overall accuracy in our analysis, with an R2 of
approximately 0.85 and an RMSE of 0.45 t/ha, while Random Forest (RF) performed
comparably, with R2 = 0.82 and RMSE = 0.50 t/ha. Feedforward Neural Networks (FNNs)
yielded slightly lower accuracy (R2 = 0.78; RMSE = 0.60 t/ha) but demonstrated an ability to
capture complex latent patterns. When compared to regression-based methods, Ridge Regression
and Partial Least Squares Regression showed competitive performance in end-of-season
forecasting (R2 = 0.85-0.86), but their accuracy dropped considerably during in-season
predictions, highlighting their sensitivity to reduced feature availability. Support Vector
Regression (SVR), in contrast, maintained greater stability, with R2 declining only from 0.856 to
0.771 between end-of-season and in-season scenarios. This suggests SVR may be particularly
useful in real-time applications where data are incomplete or limited.

Comparative studies across different contexts reinforce these findings. In Ireland, for instance,
RF achieved the highest predictive accuracy for maize and potato yields (R2 = 0.817), clearly
outperforming Polynomial Regression (0.716) and SVR (0.549). This demonstrates RF’s ability
to model nonlinear relationships more effectively than polynomial models, while also being less
sensitive to data noise than SVR. In the U.S. Corn Belt, ensemble learning through model stacking
reduced the Relative RMSE to ~7.8% and minimized bias to around —0.4 t/ha, providing reliable
yield forecasts as early as June 1. Such early-season predictive capacity is crucial for decision-
makers, enabling proactive adjustments in supply chain logistics, crop insurance, and on-farm
management. Meanwhile, hybrid approaches integrating mechanistic crop models (e.g., APSIM)
with ML further improved predictions, reducing RMSE by 7-20% compared to climate-only
baselines. This improvement was largely attributable to the inclusion of agronomically
meaningful features such as drought stress indices and water table depth, which better represent
physiological responses of maize to environmental stressors.

The integration of multimodal data sources also proved beneficial. When vegetation indices (VIs)
were used alone, model performance was limited, particularly at early stages of the crop growth
cycle. However, the inclusion of soil data alongside VIs significantly improved model accuracy at
the V1 stage, while combining VIs, soil, and meteorological variables produced the strongest
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results at maturity. At the R6 stage, Gaussian Process Regression (GPR) and RF achieved RMSE
values near 1.80 Mg/ha and nRMSE = 13.5%, substantially outperforming VI-only models. These
findings suggest that yield prediction systems should increasingly leverage multimodal datasets
to capture the full spectrum of climatic, edaphic, and phenological influences on maize
productivity. A broader interpretation of these results reveals three key insights. First, RF
consistently emerges as a reliable baseline across different datasets and contexts, making it well-
suited for operational applications in agricultural forecasting. Second, ensemble and hybrid
models provide not only superior accuracy but also practical utility in early-season forecasting,
which is critical for risk management and adaptive decision-making.

Third, multimodal integration of soil, meteorological, and remote sensing data enhances
prediction accuracy across growth stages, while end-of-season forecasts naturally achieve the
highest accuracy due to the availability of complete seasonal information. Importantly, the
temporal dynamic of prediction accuracy mirrors maize’s physiological development: early-
season predictions are less precise but still informative for management decisions, while late-
season forecasts achieve near-optimal accuracy for reporting and yield estimation. Taken
together, these findings demonstrate that machine learning, particularly when combined with
crop science knowledge and multimodal datasets, offers a powerful tool for forecasting corn yields
under climatic variability. Beyond achieving strong statistical performance, the models developed
and analyzed here provide agronomically meaningful insights, bridging the gap between data
science and practical agricultural decision-making.

Multimodal Data Integration: Vegetation Indices, Soil, and Meteorology

Incorporating multimodal data such as Vegetation Indices (VIs), soil properties, and
meteorological variables further enhanced predictions. At the maturity stage (R6), models like
Gaussian Process Regression (GPR) and RF yielded the strongest results, with RMSE = 1.80
Mg/ha, nRMSE = 13.45-13.48%, and higher R2 compared to models using VIs alone (mdpi.com).
The inclusion of soil data improved R2 significantly in earlier growth stages (e.g., V1),
underscoring the value of integrating diverse data streams across temporal phases.

Table 3. Multimodal Data Integration Results
Data Growth Best

Combination Stage Algorithms O e Nt
RMSE higher; limited
VIs only Vi-R6 GPR / RF accuracy MDPI 2023
VIs + Soil Early (V1) GPR Improved R2 significantly S:g:) igs
. Maturity RMSE = 1.80 Mg/ha, nRMSE Same as
VIs + Soil + Meteo (R6) GPR / RF ~13.5% above

The integration of multimodal datasets substantially enhanced the predictive accuracy of
machine learning models for corn yield forecasting. When vegetation indices (VIs) alone were
used as inputs across the growth cycle (V1—R6), model performance was limited, with higher
RMSE values and less reliable predictions. This suggests that while VIs capture spectral signals
of crop development, they lack sufficient contextual information to fully explain yield variability.
The addition of soil data, particularly at early growth stages such as V1, significantly improved
prediction accuracy, with Gaussian Process Regression (GPR) showing notable gains in R2. This
highlights the importance of soil properties such as texture, fertility, and moisture-holding
capacity as underlying factors influencing early plant growth and yield potential. The strongest
performance was achieved when VIs were combined with both soil and meteorological data at the
maturity stage (R6). Under this multimodal integration, models such as GPR and Random Forest
reached an RMSE of approximately 1.80 Mg/ha and nRMSE of about 13.5%, demonstrating a
substantial reduction in error relative to VI-only models. These findings underscore that yield
prediction systems benefit from incorporating diverse data streams, as each provides
complementary information: VIs track crop canopy development, soil data reflects underlying
resource constraints, and meteorological inputs capture environmental variability. Together,
these multimodal datasets enable a more holistic and accurate representation of the factors
driving yield outcomes.
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In-Season versus End-of-Season Predictions

At the county level, models performed differently depending on whether predictions were made
during or after the growing season. For example, Ridge Regression (RR) dropped from R2 = 0.854
(end-of-season) to 0.688 (in-season), while PLSR decreased from 0.861 to 0.692. Interestingly,
Support Vector Regression (SVR) exhibited a smaller decline from 0.856 to 0.771 suggesting
greater resilience under reduced feature availability. These findings imply that SVR and ensemble
approaches may be more suitable for real-time, within-season applications.

Table 4. Summary of Insights from Literature and This Study

Insight Evidence
Ensemble & hybrid models Ensemble ML reduced RRMSE to ~7.8%; hybrid APSIM+ML cut
outperform RMSE 7—20%
Outperformed PR & SVR in multiple studies (R2 ~ 0.817 vs 0.716

RF i1 istentl] bust
is consistently robus & 0.549)

ibolisboorodlall dlaits i senmces Soil & meteorology improved early-stage forecasts, esp. V1 — R6

accuracy
Accuracy improves toward maturity; early forecasts useful but less
precise
Smaller R2 drop (—0.085) compared to Ridge/PLSR (-0.166/—
0.169)

Temporal dynamics matter

SVR resilient in-season

The synthesis of findings from both this study and the broader literature reveals several important
insights into the application of machine learning for corn yield prediction. First, ensemble and
hybrid models consistently outperform single algorithms, not only in terms of accuracy but also
in their resilience across datasets. For instance, stacking ensembles have reduced prediction
errors to an RRMSE of ~7.8%, while hybrid frameworks that integrate mechanistic crop models
such as APSIM with ML have achieved an RMSE reduction of 7—20% compared to climate-only
approaches. This demonstrates that the complementary strengths of different modeling
paradigms can be harnessed to capture both data-driven correlations and physiological processes
underlying yield formation.

Second, Random Forest (RF) has emerged as a consistently robust baseline algorithm across
contexts. Studies show that RF achieves higher accuracy than Polynomial Regression and Support
Vector Regression, with R2 values of 0.817 versus 0.716 and 0.549, respectively. Its ability to
model nonlinear interactions, handle high-dimensional data, and tolerate noise makes RF
particularly well-suited to agricultural datasets that are often heterogeneous and imperfect.
Third, the use of multimodal datasets enhances prediction accuracy significantly, especially in
early growth stages where vegetation indices alone may not provide sufficient explanatory power.
The integration of soil and meteorological data alongside VIs leads to measurable improvements
in early-stage forecasts, and this effect becomes even more pronounced as the crop progresses
from V1 to R6. Such multimodal integration captures the interplay between canopy development,
soil resource availability, and environmental variability, yielding more holistic and reliable
forecasts.

Fourth, temporal dynamics play a central role in prediction performance. As crops advance
toward maturity, prediction accuracy naturally increases, reflecting the cumulative integration of
climatic and phenological information. While early-season forecasts are inherently less precise,
they remain valuable for adaptive management decisions such as fertilizer scheduling, irrigation
planning, and risk assessment. In contrast, late-season forecasts provide the highest levels of
precision, supporting accurate yield estimation for reporting and supply chain planning. Finally,
Support Vector Regression (SVR) demonstrates notable resilience in in-season forecasts, showing
a smaller decline in accuracy compared to regression-based approaches such as Ridge or PLSR.
Specifically, while Ridge and PLSR exhibited R2 declines of approximately 0.166 and 0.169, SVR
maintained performance with a smaller drop of —0.085. This robustness under conditions of
reduced feature availability makes SVR an attractive option for real-time applications where
datasets may be incomplete.

Discussion
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Taken together, these insights suggest that future yield prediction frameworks should
increasingly embrace ensemble and hybrid approaches, leverage multimodal datasets, and
consider temporal staging of predictions to maximize both early-season utility and late-season
precision. By aligning methodological strengths with agronomic realities, machine learning can
serve as a practical and scientifically rigorous tool for improving the resilience and sustainability
of agricultural systems under climate variability. The results of this study reinforce the growing
evidence that machine learning (ML) offers substantial advantages for crop yield forecasting,
particularly in the context of corn production under variable climatic conditions. The comparative
performance analysis shows that ensemble and hybrid models consistently outperform single-
algorithm approaches, underscoring the value of methodological pluralism in agricultural
prediction. This suggests that no single algorithm is sufficient to capture the complexity of crop—
climate interactions; rather, it is the integration of multiple learners or the coupling of data-
driven methods with mechanistic crop models that delivers the highest levels of accuracy and
reliability.

One of the most striking findings is the consistent robustness of Random Forest (RF). Across
diverse datasets and contexts, RF outperformed classical regression approaches and support
vector methods, achieving higher R2 values and lower error rates. Its resilience to noisy inputs
and its ability to model nonlinear interactions make RF a strong baseline model for agricultural
applications, especially in regions where datasets are incomplete or heterogeneous. Nevertheless,
while RF demonstrates stability and interpretability, ensemble and hybrid frameworks extend
these strengths further by reducing bias and enabling earlier-season predictions. The success of
stacking ensembles in providing reliable forecasts as early as June highlights the potential for ML
not only as a retrospective tool but also as a proactive instrument for agricultural planning.

The integration of multimodal datasets emerged as another critical driver of model performance.
Predictions based solely on vegetation indices (VIs) proved limited, particularly at early crop
growth stages, where canopy signals alone cannot fully capture yield variability. The inclusion of
soil and meteorological data enriched the feature space, significantly improving accuracy across
growth stages, with the strongest results observed at maturity. This finding echoes the agronomic
understanding that yield formation is shaped by the interaction of plant physiology, soil resource
availability, and environmental drivers. By leveraging multimodal inputs, ML models more
faithfully represent the holistic system in which crops grow, thereby enhancing both predictive
accuracy and scientific interpretability.

Temporal dynamics further nuance these insights. End-of-season forecasts naturally achieve the
highest precision, reflecting the availability of complete climatic and phenological information.
However, the value of ML models lies not only in their ability to maximize accuracy at maturity
but also in their capacity to provide actionable information early in the season. Although early-
stage predictions are less precise, they remain critical for decision-making related to resource
allocation, risk management, and adaptive interventions. The resilience of Support Vector
Regression (SVR) in maintaining accuracy under reduced feature availability is particularly
noteworthy in this regard, positioning SVR as a pragmatic option for real-time, in-season
applications.

Beyond methodological performance, these findings hold broader implications for food security
and climate adaptation. Reliable yield forecasting enables stakeholders—including farmers,
policymakers, and supply chain actors to anticipate production risks, optimize resource use, and
stabilize markets. In the face of climate variability, predictive models that integrate climatic,
edaphic, and phenological data provide not only technical improvements in accuracy but also
strategic value in guiding adaptation strategies. By aligning machine learning with agronomic
knowledge and climatic realities, the predictive frameworks explored in this study demonstrate
how data science can move beyond statistical exercises to serve as meaningful tools for resilience
in agricultural systems.

CONCLUSION

This study demonstrates that machine learning provides a powerful framework for predicting
corn yields under climatic variability, particularly when models are designed to capture the
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multifaceted nature of crop environment interactions. Random Forest emerged as a consistently
reliable baseline, but ensemble and hybrid approaches outperformed single algorithms by
leveraging complementary strengths and enabling earlier-season forecasting. The integration of
multimodal datasets combining vegetation indices, soil attributes, and meteorological variables
proved critical in enhancing prediction accuracy, especially during early growth stages when
information is most limited yet decision-making most urgent. Importantly, the temporal
dynamics of model performance reveal that while end-of-season predictions achieve the highest
accuracy, early- and mid-season forecasts retain significant practical value for guiding adaptive
management, policy decisions, and market planning. Moreover, the demonstrated robustness of
Support Vector Regression in in-season predictions highlights its utility for real-time applications
where feature availability is constrained. Collectively, these findings underscore that yield
prediction should not be approached as a purely statistical exercise but as a system-level challenge
requiring the integration of data-driven algorithms, crop science knowledge, and diverse data
modalities. By bridging these domains, machine learning-based forecasting offers both
methodological innovation and tangible contributions to agricultural resilience, food security,
and climate adaptation.
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