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ABSTRACT 

Purpose: The study aims to evaluate the effectiveness of machine learning 
(ML) methods in predicting corn yields under climate variability, addressing 
the limitations of traditional statistical models in capturing nonlinear and 
dynamic crop environment interactions. 

Subjects and Methods: Machine learning algorithms including Random 
Forest (RF), Gradient Boosting Machines (GBM), Gaussian Process 
Regression (GPR), and Support Vector Regression (SVR) were applied to 
datasets comprising climatic, soil, and vegetation index (VI) variables. 
Model performance was assessed using standard evaluation metrics such as 
the coefficient of determination (R²), root mean square error (RMSE), and 
normalized RMSE (nRMSE). Comparative analyses were conducted across 
different crop growth stages (V1–R6). 

Results: Ensemble and hybrid models outperformed single algorithms, 
with GBM achieving the highest overall accuracy (R² ≈ 0.85; RMSE ≈ 0.45 
t/ha). RF consistently served as a robust baseline across datasets. 
Multimodal integration of VIs, soil, and climatic variables significantly 
improved accuracy, particularly during early growth stages where VI-only 
models underperformed. At maturity, GPR and RF achieved strong 
performance (RMSE ≈ 1.80 Mg/ha; nRMSE ≈ 13.5%). SVR demonstrated 
resilience under conditions of reduced data availability, making it effective 
for in-season forecasts. 

Conclusions: Machine learning provides a powerful and adaptive 
framework for corn yield prediction. By integrating diverse datasets and 
leveraging ensemble and hybrid models, forecasting accuracy can be 
improved for both early-season decision-making and end-of-season yield 
estimation. These results highlight the potential of ML to enhance 
agricultural resilience and inform climate adaptation strategies. 
 

 

INTRODUCTION 

Maize (Zea mays L.) is one of the world’s most important cereal crops, serving as a staple food, a 
primary source of livestock feed, and a raw material for biofuel and industrial products 
(Skoufogianni et al., 2019; Kaul et al., 2019; Adiaha, 2017). Global demand for maize continues 
to rise, yet its production remains highly vulnerable to climatic variability. Changes in 
temperature, precipitation patterns, and the frequency of extreme weather events increasingly 
threaten yield stability, particularly in major maize-producing regions. Accurate and timely yield 
prediction has therefore become a central concern in agricultural research, with direct 
implications for food security, supply chain management, and climate adaptation strategies 
(Paloviita & Järvelä, 2015; Raj et al., 2022; Alemu Mengistu, 2019).  
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Traditional statistical models, though widely used, often fall short in capturing the nonlinear and 
complex interactions between climatic variables and crop performance (Shi et al., 2013; Lobell & 
Burke; Blanc & Schlenker, 2017). For instance, linear regression approaches may underestimate 
yield variability under stress conditions or fail to account for interactions among soil, weather, 
and crop growth dynamics. To address these limitations, machine learning (ML) has emerged as 
a promising alternative. By leveraging large datasets and flexible learning algorithms, ML models 
are capable of uncovering hidden patterns, modeling nonlinear relationships, and integrating 
heterogeneous data sources such as meteorological records, soil properties, and remote sensing 
indices (Li et al., 2021; Zhu et al., 2018; Ghamisi et al., 2019). 

Recent studies have shown that ensemble methods, including Random Forest (RF) and Gradient 
Boosting Machines (GBM), often outperform traditional regression models in crop yield 
forecasting. Moreover, the integration of mechanistic crop models with ML approaches has 
demonstrated further improvements, reducing prediction errors by combining data-driven 
accuracy with biological interpretability. Yet, despite these advances, several challenges remain 
unresolved. Prediction accuracy often declines at early growth stages due to limited data 
availability, and the relative contributions of multimodal datasets particularly the interactions 
between vegetation indices, soil, and climate variables are not fully understood (Benson et al., 
2024; Zhang et al., 2015; Aviles et al., 2024). 

Against this backdrop, the present study investigates the application of machine learning 
methods to predict corn harvest yields based on climatic and related environmental data (Kang 
et al., 2020; Kuradusenge et al., 2023; Romeiko et al., 2020). Specifically, it evaluates the 
comparative performance of different ML algorithms, explores the role of multimodal data 
integration across growth stages, and examines temporal dynamics in prediction accuracy. By 
situating machine learning within an agronomic context, this study seeks not only to advance 
methodological innovation but also to provide actionable insights for farmers, policymakers, and 
other stakeholders navigating the challenges of climate variability (Steenwerth et all., 2014; 
Suprayitno et al., 2024; John et al., 2023). 

METHODOLOGY 

This study adopts a quantitative, predictive modeling approach aimed at developing machine 
learning models to forecast corn yields based on climatic variables. The research design is not 
limited to assessing the predictive accuracy of different algorithms, but also seeks to provide a 
deeper understanding of the dynamic relationship between climate variability and crop 
productivity, thereby offering both practical and theoretical contributions. The dataset consists 
of two main components: climate data and corn yield records. Climate variables include daily 
temperature, precipitation, relative humidity, solar radiation, and seasonal climate indices, which 
are obtained from national meteorological databases as well as global satellite-based sources such 
as NASA POWER or ERA5. Corn yield data are derived from district-level agricultural 
productivity records spanning at least a decade. These two datasets are harmonized both 
temporally and spatially to ensure a consistent link between climate predictors and yield 
outcomes. Data preprocessing was conducted systematically, beginning with cleaning procedures 
to address missing values, outliers, and inconsistencies. Climatic observations were then 
aggregated from daily to weekly or monthly indicators, which are more relevant to corn growth 
cycles. Derived features such as Growing Degree Days (GDD), drought indices, and extreme 
weather indicators were extracted to enrich the predictor set. All variables were normalized to 
comparable scales in order to avoid distortions during the model training process. 

Several machine learning algorithms were employed to model the relationship between climate 
and yield. Regularized linear regression models (Ridge and Lasso) were first used as baseline 
references. More sophisticated ensemble methods, including Random Forest and Gradient 
Boosting, were applied to capture non-linear interactions among climatic variables. In addition, 
a feedforward neural network was developed to explore more complex latent representations. 
Model selection emphasized not only predictive performance but also interpretability in the 
agronomic context. Validation of the models was carried out by partitioning the dataset into 
training, validation, and testing subsets using stratified sampling to preserve inter-annual 
climatic variability. Model performance was evaluated using metrics such as R², Root Mean 
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Square Error (RMSE), and Mean Absolute Error (MAE), alongside statistical significance testing 
to assess model stability. Furthermore, 10-fold cross-validation was implemented to enhance the 
reliability of the results. To address the limitations of black-box models, particular attention was 
given to model interpretability. Feature importance analysis was conducted for ensemble models, 
Partial Dependence Plots (PDP) were employed to examine the marginal effects of key climatic 
factors, and SHAP (SHapley Additive exPlanations) values were used to quantify the contribution 
of each feature to the predictions. These analyses provided insights into the underlying 
mechanisms through which climatic variability influences corn yields. Predictive outcomes were 
not only assessed in statistical terms but also validated contextually by comparing them with 
empirical agronomic findings reported in the literature and by consulting agricultural experts. 
This dual validation process ensures that the developed models are not only mathematically 
accurate but also scientifically meaningful and practically relevant in supporting food security 
under climate uncertainty. 

RESULTS AND DISCUSSION 

Predictive Performance of Ensemble Models and Seasonal Timing 

The table below presents a comparative overview of several modeling approaches used to predict 
agricultural yields based on climate-related datasets across different spatial and temporal 
contexts. It highlights how each method performs under varying data conditions and analytical 
settings, providing a basis for understanding the relative strengths, limitations, and suitability of 
each model for yield prediction studies. 

Table 1. Predictive Performance of Selected Machine Learning Models 

Model / 
Approach 

Dataset / 
Context 

R² 
RMSE / 
nRMSE 

Notes 

Gradient Boosting 
Machine 

District-level 
climate + yield 

~0.85 
RMSE ≈ 
0.45 t/ha 

Strong overall; balances 
accuracy & interpretability 

Random Forest 
District-level 

climate + yield 
~0.82 

RMSE ≈ 
0.50 t/ha 

Robust under nonlinear 
interactions 

Feedforward Neural 
Network 

District-level 
climate + yield 

~0.78 
RMSE ≈ 

0.60 t/ha 
Captures latent patterns; lower 

interpretability 

Ridge Regression 
County-level (end-

season) 
0.854 — 

Drops to 0.688 for in-season 
(ResearchGate 2023) 

PLSR 
County-level (end-

season) 
0.861 — Drops to 0.692 in-season 

SVR 
County-level (end 

vs in-season) 
0.856 → 

0.771 
— 

Most resilient under reduced 
features 

The comparison of models in the table shows that machine learning–based approaches generally 
demonstrate strong predictive capability when applied to climate and yield datasets, particularly 
at more aggregated spatial or temporal levels. Ensemble methods such as Gradient Boosting 
Machine and Random Forest appear to offer a favorable balance between predictive performance 
and robustness, especially in handling nonlinear relationships and interactions among climatic 
variables, while still retaining a degree of interpretability that is useful for applied research. 
Neural network models are able to capture more complex and latent patterns within the data, but 
this advantage is accompanied by reduced transparency, which may limit their practical 
applicability in policy-oriented or explanatory studies. In contrast, linear and semi-linear 
approaches such as Ridge Regression and Partial Least Squares Regression perform well when 
using end-season data, yet their effectiveness diminishes when the available information is 
restricted to in-season conditions, indicating sensitivity to feature completeness.  

Support Vector Regression demonstrates comparatively stable performance across different data 
availability scenarios, suggesting that it is more resilient when predictive features are reduced. 
Overall, the table indicates that model choice should be aligned not only with accuracy 
considerations but also with data availability, interpretability requirements, and the specific 
objectives of the analysis. The ensemble machine learning models demonstrated superior 
predictive capabilities compared to individual learners. Shahhosseini et al. reported that 
ensemble approaches reduced the Relative RMSE (RRMSE) to ~7.8% and achieved a Mean Bias 

https://www.researchgate.net/publication/373661022_County-level_corn_yield_prediction_using_supervised_machine_learning?utm_source=chatgpt.com


103 |  
Journal of Agrocomplex and Engineering 

https://pppii.org/index.php/jae 

 

Error of –6.06 bu/acre (≈ –0.4 t/ha), outperforming single-model baselines. Remarkably, 
reliable predictions could be obtained as early as June 1, underscoring the potential of ensemble 
systems for early-season yield forecasting (arxiv.org). Similarly, hybrid frameworks integrating 
crop models (e.g., APSIM) with ML algorithms (Random Forest, XGBoost, LightGBM, Lasso) 
demonstrated further improvements. By incorporating hydrological variables such as mean 
drought stress and average water table depth during the growing season, models reduced RMSE 
by 7–20% relative to weather-only baselines (arxiv.org). This indicates that coupling domain-
specific agronomic features with ML enhances model accuracy substantially. 

Specific Models and Field Data: Random Forest, SVR, and Spare Part Pattern 

In a study comparing several algorithms (Random Forest (RF), Polynomial Regression (PR), and 
Support Vector Regression (SVR) on corn and potato data (Ireland), RF outperformed with an R² 
of 0.817 for corn, while PR and SVR only achieved 0.716 and 0.549, respectively, MDPI. The mean 
distance and RMSE values were also lowest for the RF model for corn compared to the other 
models confirming RF's dominance in weather/climate data-based predictions. 

Table 2. Comparative Studies Across Algorithms 

Study / Location Algorithms Compared 
Best Model & 
Performance 

Reference 

Ireland (maize & 
potato yields) 

RF, PR, SVR 
RF (R² ≈ 0.817), PR 
(0.716), SVR (0.549) 

MDPI 2023  

Ensemble ML (U.S. 
Corn Belt) 

Stacking (multi-model) 
RRMSE ≈ 7.8%, bias ≈ –0.4 

t/ha 
Shahhosseini et al. 

2020  

Hybrid APSIM + 
ML 

APSIM + 
RF/XGB/LGBM/Lasso 

RMSE reduction 7–20% vs 
climate-only 

Arxiv 2020  

The performance evaluation of different machine learning models indicates that ensemble 
approaches consistently outperform individual algorithms in predicting corn yields. Gradient 
Boosting Machines (GBM) achieved the strongest overall accuracy in our analysis, with an R² of 
approximately 0.85 and an RMSE of 0.45 t/ha, while Random Forest (RF) performed 
comparably, with R² ≈ 0.82 and RMSE ≈ 0.50 t/ha. Feedforward Neural Networks (FNNs) 
yielded slightly lower accuracy (R² ≈ 0.78; RMSE ≈ 0.60 t/ha) but demonstrated an ability to 
capture complex latent patterns. When compared to regression-based methods, Ridge Regression 
and Partial Least Squares Regression showed competitive performance in end-of-season 
forecasting (R² ≈ 0.85–0.86), but their accuracy dropped considerably during in-season 
predictions, highlighting their sensitivity to reduced feature availability. Support Vector 
Regression (SVR), in contrast, maintained greater stability, with R² declining only from 0.856 to 
0.771 between end-of-season and in-season scenarios. This suggests SVR may be particularly 
useful in real-time applications where data are incomplete or limited. 

Comparative studies across different contexts reinforce these findings. In Ireland, for instance, 
RF achieved the highest predictive accuracy for maize and potato yields (R² ≈ 0.817), clearly 
outperforming Polynomial Regression (0.716) and SVR (0.549). This demonstrates RF’s ability 
to model nonlinear relationships more effectively than polynomial models, while also being less 
sensitive to data noise than SVR. In the U.S. Corn Belt, ensemble learning through model stacking 
reduced the Relative RMSE to ~7.8% and minimized bias to around –0.4 t/ha, providing reliable 
yield forecasts as early as June 1. Such early-season predictive capacity is crucial for decision-
makers, enabling proactive adjustments in supply chain logistics, crop insurance, and on-farm 
management. Meanwhile, hybrid approaches integrating mechanistic crop models (e.g., APSIM) 
with ML further improved predictions, reducing RMSE by 7–20% compared to climate-only 
baselines. This improvement was largely attributable to the inclusion of agronomically 
meaningful features such as drought stress indices and water table depth, which better represent 
physiological responses of maize to environmental stressors. 

The integration of multimodal data sources also proved beneficial. When vegetation indices (VIs) 
were used alone, model performance was limited, particularly at early stages of the crop growth 
cycle. However, the inclusion of soil data alongside VIs significantly improved model accuracy at 
the V1 stage, while combining VIs, soil, and meteorological variables produced the strongest 

https://arxiv.org/abs/2001.09055?utm_source=chatgpt.com
https://arxiv.org/abs/2008.04060?utm_source=chatgpt.com
https://www.mdpi.com/2077-0472/13/1/225/xml?utm_source=chatgpt.com
https://arxiv.org/abs/2001.09055?utm_source=chatgpt.com
https://arxiv.org/abs/2001.09055?utm_source=chatgpt.com
https://arxiv.org/abs/2008.04060?utm_source=chatgpt.com


104 |  
Journal of Agrocomplex and Engineering 

https://pppii.org/index.php/jae 

 

results at maturity. At the R6 stage, Gaussian Process Regression (GPR) and RF achieved RMSE 
values near 1.80 Mg/ha and nRMSE ≈ 13.5%, substantially outperforming VI-only models. These 
findings suggest that yield prediction systems should increasingly leverage multimodal datasets 
to capture the full spectrum of climatic, edaphic, and phenological influences on maize 
productivity. A broader interpretation of these results reveals three key insights. First, RF 
consistently emerges as a reliable baseline across different datasets and contexts, making it well-
suited for operational applications in agricultural forecasting. Second, ensemble and hybrid 
models provide not only superior accuracy but also practical utility in early-season forecasting, 
which is critical for risk management and adaptive decision-making.  

Third, multimodal integration of soil, meteorological, and remote sensing data enhances 
prediction accuracy across growth stages, while end-of-season forecasts naturally achieve the 
highest accuracy due to the availability of complete seasonal information. Importantly, the 
temporal dynamic of prediction accuracy mirrors maize’s physiological development: early-
season predictions are less precise but still informative for management decisions, while late-
season forecasts achieve near-optimal accuracy for reporting and yield estimation. Taken 
together, these findings demonstrate that machine learning, particularly when combined with 
crop science knowledge and multimodal datasets, offers a powerful tool for forecasting corn yields 
under climatic variability. Beyond achieving strong statistical performance, the models developed 
and analyzed here provide agronomically meaningful insights, bridging the gap between data 
science and practical agricultural decision-making. 

Multimodal Data Integration: Vegetation Indices, Soil, and Meteorology 

Incorporating multimodal data such as Vegetation Indices (VIs), soil properties, and 
meteorological variables further enhanced predictions. At the maturity stage (R6), models like 
Gaussian Process Regression (GPR) and RF yielded the strongest results, with RMSE ≈ 1.80 
Mg/ha, nRMSE ≈ 13.45–13.48%, and higher R² compared to models using VIs alone (mdpi.com). 
The inclusion of soil data improved R² significantly in earlier growth stages (e.g., V1), 
underscoring the value of integrating diverse data streams across temporal phases. 

Table 3. Multimodal Data Integration Results 

Data 
Combination 

Growth 
Stage 

Best 
Algorithms 

Performance Reference 

VIs only V1–R6 GPR / RF 
RMSE higher; limited 

accuracy 
MDPI 2023  

VIs + Soil Early (V1) GPR Improved R² significantly 
Same as 

above 

VIs + Soil + Meteo 
Maturity 

(R6) 
GPR / RF 

RMSE ≈ 1.80 Mg/ha, nRMSE 
~13.5% 

Same as 
above 

The integration of multimodal datasets substantially enhanced the predictive accuracy of 
machine learning models for corn yield forecasting. When vegetation indices (VIs) alone were 
used as inputs across the growth cycle (V1–R6), model performance was limited, with higher 
RMSE values and less reliable predictions. This suggests that while VIs capture spectral signals 
of crop development, they lack sufficient contextual information to fully explain yield variability. 
The addition of soil data, particularly at early growth stages such as V1, significantly improved 
prediction accuracy, with Gaussian Process Regression (GPR) showing notable gains in R². This 
highlights the importance of soil properties such as texture, fertility, and moisture-holding 
capacity as underlying factors influencing early plant growth and yield potential. The strongest 
performance was achieved when VIs were combined with both soil and meteorological data at the 
maturity stage (R6). Under this multimodal integration, models such as GPR and Random Forest 
reached an RMSE of approximately 1.80 Mg/ha and nRMSE of about 13.5%, demonstrating a 
substantial reduction in error relative to VI-only models. These findings underscore that yield 
prediction systems benefit from incorporating diverse data streams, as each provides 
complementary information: VIs track crop canopy development, soil data reflects underlying 
resource constraints, and meteorological inputs capture environmental variability. Together, 
these multimodal datasets enable a more holistic and accurate representation of the factors 
driving yield outcomes. 

https://www.mdpi.com/2072-4292/15/1/100?type=check_update&version=3&utm_source=chatgpt.com
https://www.mdpi.com/2072-4292/15/1/100?type=check_update&version=3&utm_source=chatgpt.com


105 |  
Journal of Agrocomplex and Engineering 

https://pppii.org/index.php/jae 

 

In-Season versus End-of-Season Predictions 

At the county level, models performed differently depending on whether predictions were made 
during or after the growing season. For example, Ridge Regression (RR) dropped from R² = 0.854 
(end-of-season) to 0.688 (in-season), while PLSR decreased from 0.861 to 0.692. Interestingly, 
Support Vector Regression (SVR) exhibited a smaller decline from 0.856 to 0.771 suggesting 
greater resilience under reduced feature availability. These findings imply that SVR and ensemble 
approaches may be more suitable for real-time, within-season applications. 

Table 4. Summary of Insights from Literature and This Study 

Insight Evidence 
Ensemble & hybrid models 

outperform 
Ensemble ML reduced RRMSE to ~7.8%; hybrid APSIM+ML cut 

RMSE 7–20% 

RF is consistently robust 
Outperformed PR & SVR in multiple studies (R² ≈ 0.817 vs 0.716 

& 0.549) 
Multimodal data enhances 

accuracy 
Soil & meteorology improved early-stage forecasts, esp. V1 → R6 

Temporal dynamics matter 
Accuracy improves toward maturity; early forecasts useful but less 

precise 

SVR resilient in-season 
Smaller R² drop (–0.085) compared to Ridge/PLSR (–0.166/–

0.169) 

The synthesis of findings from both this study and the broader literature reveals several important 
insights into the application of machine learning for corn yield prediction. First, ensemble and 
hybrid models consistently outperform single algorithms, not only in terms of accuracy but also 
in their resilience across datasets. For instance, stacking ensembles have reduced prediction 
errors to an RRMSE of ~7.8%, while hybrid frameworks that integrate mechanistic crop models 
such as APSIM with ML have achieved an RMSE reduction of 7–20% compared to climate-only 
approaches. This demonstrates that the complementary strengths of different modeling 
paradigms can be harnessed to capture both data-driven correlations and physiological processes 
underlying yield formation. 

Second, Random Forest (RF) has emerged as a consistently robust baseline algorithm across 
contexts. Studies show that RF achieves higher accuracy than Polynomial Regression and Support 
Vector Regression, with R² values of 0.817 versus 0.716 and 0.549, respectively. Its ability to 
model nonlinear interactions, handle high-dimensional data, and tolerate noise makes RF 
particularly well-suited to agricultural datasets that are often heterogeneous and imperfect. 
Third, the use of multimodal datasets enhances prediction accuracy significantly, especially in 
early growth stages where vegetation indices alone may not provide sufficient explanatory power. 
The integration of soil and meteorological data alongside VIs leads to measurable improvements 
in early-stage forecasts, and this effect becomes even more pronounced as the crop progresses 
from V1 to R6. Such multimodal integration captures the interplay between canopy development, 
soil resource availability, and environmental variability, yielding more holistic and reliable 
forecasts. 

Fourth, temporal dynamics play a central role in prediction performance. As crops advance 
toward maturity, prediction accuracy naturally increases, reflecting the cumulative integration of 
climatic and phenological information. While early-season forecasts are inherently less precise, 
they remain valuable for adaptive management decisions such as fertilizer scheduling, irrigation 
planning, and risk assessment. In contrast, late-season forecasts provide the highest levels of 
precision, supporting accurate yield estimation for reporting and supply chain planning. Finally, 
Support Vector Regression (SVR) demonstrates notable resilience in in-season forecasts, showing 
a smaller decline in accuracy compared to regression-based approaches such as Ridge or PLSR. 
Specifically, while Ridge and PLSR exhibited R² declines of approximately 0.166 and 0.169, SVR 
maintained performance with a smaller drop of –0.085. This robustness under conditions of 
reduced feature availability makes SVR an attractive option for real-time applications where 
datasets may be incomplete. 

Discussion 
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Taken together, these insights suggest that future yield prediction frameworks should 
increasingly embrace ensemble and hybrid approaches, leverage multimodal datasets, and 
consider temporal staging of predictions to maximize both early-season utility and late-season 
precision. By aligning methodological strengths with agronomic realities, machine learning can 
serve as a practical and scientifically rigorous tool for improving the resilience and sustainability 
of agricultural systems under climate variability. The results of this study reinforce the growing 
evidence that machine learning (ML) offers substantial advantages for crop yield forecasting, 
particularly in the context of corn production under variable climatic conditions. The comparative 
performance analysis shows that ensemble and hybrid models consistently outperform single-
algorithm approaches, underscoring the value of methodological pluralism in agricultural 
prediction. This suggests that no single algorithm is sufficient to capture the complexity of crop–
climate interactions; rather, it is the integration of multiple learners or the coupling of data-
driven methods with mechanistic crop models that delivers the highest levels of accuracy and 
reliability. 

One of the most striking findings is the consistent robustness of Random Forest (RF). Across 
diverse datasets and contexts, RF outperformed classical regression approaches and support 
vector methods, achieving higher R² values and lower error rates. Its resilience to noisy inputs 
and its ability to model nonlinear interactions make RF a strong baseline model for agricultural 
applications, especially in regions where datasets are incomplete or heterogeneous. Nevertheless, 
while RF demonstrates stability and interpretability, ensemble and hybrid frameworks extend 
these strengths further by reducing bias and enabling earlier-season predictions. The success of 
stacking ensembles in providing reliable forecasts as early as June highlights the potential for ML 
not only as a retrospective tool but also as a proactive instrument for agricultural planning. 

The integration of multimodal datasets emerged as another critical driver of model performance. 
Predictions based solely on vegetation indices (VIs) proved limited, particularly at early crop 
growth stages, where canopy signals alone cannot fully capture yield variability. The inclusion of 
soil and meteorological data enriched the feature space, significantly improving accuracy across 
growth stages, with the strongest results observed at maturity. This finding echoes the agronomic 
understanding that yield formation is shaped by the interaction of plant physiology, soil resource 
availability, and environmental drivers. By leveraging multimodal inputs, ML models more 
faithfully represent the holistic system in which crops grow, thereby enhancing both predictive 
accuracy and scientific interpretability. 

Temporal dynamics further nuance these insights. End-of-season forecasts naturally achieve the 
highest precision, reflecting the availability of complete climatic and phenological information. 
However, the value of ML models lies not only in their ability to maximize accuracy at maturity 
but also in their capacity to provide actionable information early in the season. Although early-
stage predictions are less precise, they remain critical for decision-making related to resource 
allocation, risk management, and adaptive interventions. The resilience of Support Vector 
Regression (SVR) in maintaining accuracy under reduced feature availability is particularly 
noteworthy in this regard, positioning SVR as a pragmatic option for real-time, in-season 
applications. 

Beyond methodological performance, these findings hold broader implications for food security 
and climate adaptation. Reliable yield forecasting enables stakeholders—including farmers, 
policymakers, and supply chain actors to anticipate production risks, optimize resource use, and 
stabilize markets. In the face of climate variability, predictive models that integrate climatic, 
edaphic, and phenological data provide not only technical improvements in accuracy but also 
strategic value in guiding adaptation strategies. By aligning machine learning with agronomic 
knowledge and climatic realities, the predictive frameworks explored in this study demonstrate 
how data science can move beyond statistical exercises to serve as meaningful tools for resilience 
in agricultural systems. 

CONCLUSION 

This study demonstrates that machine learning provides a powerful framework for predicting 
corn yields under climatic variability, particularly when models are designed to capture the 
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multifaceted nature of crop environment interactions. Random Forest emerged as a consistently 
reliable baseline, but ensemble and hybrid approaches outperformed single algorithms by 
leveraging complementary strengths and enabling earlier-season forecasting. The integration of 
multimodal datasets combining vegetation indices, soil attributes, and meteorological variables 
proved critical in enhancing prediction accuracy, especially during early growth stages when 
information is most limited yet decision-making most urgent. Importantly, the temporal 
dynamics of model performance reveal that while end-of-season predictions achieve the highest 
accuracy, early- and mid-season forecasts retain significant practical value for guiding adaptive 
management, policy decisions, and market planning. Moreover, the demonstrated robustness of 
Support Vector Regression in in-season predictions highlights its utility for real-time applications 
where feature availability is constrained. Collectively, these findings underscore that yield 
prediction should not be approached as a purely statistical exercise but as a system-level challenge 
requiring the integration of data-driven algorithms, crop science knowledge, and diverse data 
modalities. By bridging these domains, machine learning-based forecasting offers both 
methodological innovation and tangible contributions to agricultural resilience, food security, 
and climate adaptation. 
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