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INTRODUCTION

ABSTRACT

Purpose: This study aims to evaluate the effectiveness of an Al-enabled
predictive control system in enhancing environmental stability, resource
efficiency, and crop productivity within tropical greenhouse farming.

Subjects and Methods: The research was conducted using a 4 x 6-meter
greenhouse prototype integrating IoT sensors and machine learning
algorithms, including Random Forest and Artificial Neural Networks.
Lettuce (Lactuca sativa) served as the model crop. The AI-driven greenhouse
was compared with a conventional manually operated system across a full
cultivation cycle. Data collected included microclimate parameters, water
and energy consumption, plant growth indicators, and final yield.

Results: The Al-enabled greenhouse maintained more consistent
environmental conditions, keeping temperature, humidity, light intensity,
and soil moisture within optimal ranges. Water use was reduced by
approximately 38%, and energy consumption decreased by 13% compared
to the conventional system. Plants grown under predictive control exhibited
stronger vegetative growth, with notable increases in height, leaf number,
and canopy size. Yield improved by nearly 30%, accompanied by higher
marketable quality. Predictive models demonstrated strong accuracy,
supporting reliable real-time decision-making.

Conclusions: The results confirm that Al-based predictive control
substantially improves greenhouse performance in tropical environments,
offering a sustainable and efficient solution for modern horticultural
production.

Global agricultural systems are under increasing pressure as climate variability intensifies,
natural resources become more limited, and food demand continues to rise (Vos & Bell, 20109;
Khatri et al., 2024). These pressures are particularly evident in tropical regions, where high
temperatures, humidity fluctuations, and unpredictable weather patterns frequently disrupt crop
productivity. In response to these challenges, controlled-environment agriculture (CEA),
especially greenhouse cultivation, has emerged as a promising approach for stabilizing plant
growth conditions and enhancing yield (Ojo & Zahid, 2022; Shamshiri et al., 2018). However,
conventional greenhouse systems remain heavily dependent on manual adjustments and static
control mechanisms, making them insufficiently adaptive in regions characterized by rapid and
nonlinear environmental fluctuations.

In the past decade, technological innovations such as Internet of Things (IoT) devices and sensor-
embedded systems have begun to transform greenhouse operations. By enabling real-time data
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collection on key environmental variables temperature, humidity, light intensity, CO:2
concentration, and soil moisture these systems provide farmers with a more comprehensive
understanding of plant needs and environmental dynamics. Despite these advances, most
existing greenhouse systems still rely on rule-based or threshold-driven control strategies, which
lack the flexibility to respond optimally to sudden climatic variations or to anticipate future
conditions.

Ben Ayed & Hanana (2021) and Ruiz-Real et al. (2020) said that, artificial Intelligence (AI),
particularly machine learning and deep learning techniques, has introduced a paradigm shift in
the agricultural sector. Al-driven predictive control models are capable of identifying patterns,
forecasting environmental changes, and generating adaptive control decisions that surpass the
capabilities of traditional systems. By integrating historical environmental data, plant growth
indicators, and real-time sensor inputs, Al can optimize resource allocation and ensure that crops
are exposed to consistently favorable microclimatic conditions.

The application of Al in greenhouse farming aligns with the broader movement toward precision
agriculture, which emphasizes optimized resource use and data-informed decision-making
(Azlan et al., 2025). Studies have demonstrated that AI-driven control systems can significantly
enhance water-use efficiency, energy consumption, and crop productivity. However, most
previous studies have focused on greenhouses in temperate regions, where environmental
variations are relatively mild. Tropical environments present a different set of complexities higher
temperatures, excessive humidity, and sudden weather shifts that require more robust and
responsive control approaches.

Greenhouse farming in tropical regions faces persistent challenges in maintaining stable
environmental conditions (McCartney & Lefsrud, 2018; Jensen, 2001). Excessive heat can
impede photosynthesis and disrupt plant metabolism, while low humidity levels accelerate
transpiration and create water stress. Conversely, overly high humidity increases the risk of
fungal diseases. Similarly, insufficient or excessive light conditions can reduce photosynthetic
efficiency and slow biomass accumulation. These challenges underscore the necessity of
predictive and adaptive control systems that can maintain microclimatic stability despite external
volatility.

Al-enabled predictive control systems address these issues by learning the complex interactions
between environmental parameters and plant responses. Algorithms such as Random Forest and
Artificial Neural Networks (ANN) can interpret sensor data and perform real-time predictions
about plant needs, enabling precise adjustments to irrigation, ventilation, and lighting
(Mekonnen et al., 2019). These systems offer the ability not only to respond to current conditions
but also to anticipate future fluctuations, ensuring consistent microclimate regulation.

Resource efficiency is a critical component of sustainable agricultural development, particularly
in areas where water and energy availability is limited. Ghani et al. (2019) said that, greenhouse
systems frequently consume large amounts of water for irrigation and significant energy for
ventilation and artificial lighting. AI-driven systems can significantly reduce unnecessary
resource usage by delivering irrigation based on predicted evapotranspiration, adjusting
ventilation in response to heat accumulation trends, and optimizing lighting schedules to meet
crops’ photosynthetic requirements without waste.

Moreover, predictive AI models can improve crop yield by aligning environmental parameters
with optimal physiological conditions. For instance, maintaining temperature and humidity
within specific thresholds for each growth stage supports faster development, better nutrient
uptake, and increased biomass production (Walne & Reddy, 2022). Al-based systems facilitate
this precision by continuously refining control strategies based on real-time performance data
and plant growth outcomes.

The integration of AI into tropical greenhouse systems also offers broader socio-economic
implications (Hoseinzadeh & Garcia, 2024). In many tropical countries, agricultural productivity
is hindered by limited access to advanced technologies, insufficient digital infrastructure, and low
technological literacy among farmers. Demonstrating the effectiveness and practicality of AlI-
enabled greenhouse management provides a pathway for modernizing agricultural practices in
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resource-constrained environments, while also improving food security (Abedalrhman & Alzaydi,
2025).

Despite the potential benefits, the implementation of Al-driven predictive control in tropical
greenhouse farming remains underexplored. Few empirical studies have evaluated how such
systems perform under real tropical conditions, particularly in terms of environmental stability,
resource efficiency, and yield improvement (Scopel et al., 2013). This gap highlights the need for
experimental validation of Al-enabled systems in real-world settings to determine their
scalability and long-term feasibility.

Prototypes that integrate IoT sensors with Al algorithms serve as essential testing grounds for
evaluating the functionality of predictive models. These systems provide opportunities to assess
how AI responds to dynamic environmental inputs, how accurately it predicts environmental
needs, and how effectively it regulates greenhouse conditions. Through such experimental setups,
researchers can evaluate the degree to which AI improves microclimate stability and crop
performance compared with traditional manual or rule-based controls.

Early results from experimental studies have shown promising outcomes, with Al-based systems
demonstrating enhanced control precision and significant reductions in water and energy
consumption (Alenezi & Alabaiadly, 2025). However, the performance of these systems in cycles
of crop growth, variable weather conditions, and different plant species requires further
examination. Understanding how AI models adapt over time and across conditions is essential
for determining their practical utility for farmers.

Another crucial element in implementing Al-enabled greenhouse systems is the integration of
predictive analytics with actuators such as fans, pumps, and LED lighting (Hanafi et al., 2024).
These components must respond quickly and accurately to AI-generated commands to maintain
environmental stability. Poor integration or delays in system responses can diminish the
effectiveness of predictive control and lead to suboptimal plant growth. Therefore, evaluating
both software performance and hardware synchronization is vital.

Given the increasing urgency for sustainable agricultural solutions in tropical regions, Al-enabled
predictive control represents a transformative opportunity. By bridging the gap between
environmental variability and optimal crop conditions, AI-driven systems have the potential to
reshape tropical horticulture, enhancing yields while minimizing environmental impact. The
growing body of research in this field indicates that such technologies can be successfully tailored
to tropical climates with appropriate system design and calibration.

This study aims to contribute to the emerging literature by examining the effectiveness of an AI-
enabled predictive control system designed specifically for greenhouse farming in tropical
environments. Through a combination of IoT-based monitoring, machine learning algorithms,
and automated actuation, this research evaluates how Al can improve environmental stability,
increase resource-use efficiency, and enhance crop yield (Eze et al., 2025; Dhanaraj et al., 2025).
The findings are expected to provide empirical evidence of the feasibility and benefits of
implementing Al-driven smart greenhouse systems in tropical agricultural contexts.

METHODOLOGY
Research Design

This study employs an applied experimental research design, which is the most appropriate
approach for evaluating technological interventions such as Al-based predictive control systems.
The research focuses on developing, implementing, and testing a smart greenhouse prototype
equipped with Internet of Things (IoT) sensors and Artificial Intelligence algorithms in a real-
world tropical environment. Through this design, the study aims to measure the performance of
the Al-enabled system by comparing environmental stability, resource-use efficiency, and crop
yield against traditional greenhouse management practices. The experimental design allows for
controlled conditions while still capturing natural environmental variability, ensuring that results
reflect realistic growing scenarios typical of tropical agricultural settings.

System Development and Implementation
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The method includes the integration of IoT sensors, actuators, and machine learning algorithms
to construct an automated greenhouse control system. Sensors continuously monitor
environmental parameters such as temperature, humidity, light intensity, soil moisture, and CO2
concentration, while actuators including irrigation pumps, ventilation fans, and LED lights
respond to Al-driven instructions. Historical and real-time data are used to train and operate
machine learning models such as Random Forest and Artificial Neural Networks (ANN), enabling
predictive control that adjusts environmental conditions before deviations from optimal ranges
occur. The system is deployed on an experimental greenhouse plot, where its performance is
tested across multiple crop cycles using lettuce as the model plant.

Experimental Procedure

The experimental setup consists of two greenhouse conditions: an Al-enabled smart greenhouse
and a conventional manually operated greenhouse, both cultivated under identical crop type and
planting density. Each greenhouse is monitored for a fixed duration representing a full lettuce
growth cycle. The Al-driven greenhouse relies on predictive control algorithms to regulate
microclimate conditions and resource applications, while the conventional greenhouse follows
standard localized management practices. Key variables measured during the experiment include
microclimate parameters, water consumption, energy usage, plant height, number of leaves, fresh
weight, and overall productivity per square meter. This comparative experimental arrangement
allows for meaningful evaluation of the effects of Al-enabled control on environmental stability
and crop performance.

Data Analysis Technique
Descriptive Analysis

Descriptive statistical analysis is performed to summarize the environmental conditions, resource
usage, and plant growth outcomes recorded in both greenhouse systems. Mean values, standard
deviations, and parameter ranges are used to illustrate the stability and consistency of
microclimate conditions maintained by each system. This analysis provides an overview of how
closely each greenhouse aligns with the optimal conditions required for lettuce growth.
Comparative tables and graphical visualizations further support interpretation of system
performance.

Comparative Statistical Testing

To determine whether the differences observed between the Al-enabled and conventional
greenhouse systems are statistically significant, the study employs an independent samples t-test.
This technique is appropriate because the two systems represent independent experimental
conditions with continuous outcome variables such as water use, energy consumption, plant
height, and fresh biomass. The t-test evaluates whether improvements in environmental stability,
resource efficiency, and crop yield can be attributed to the Al-based predictive control rather than
random variation. A significance level (typically a = 0.05) is used to assess statistical differences.

AI Model Evaluation Metrics

Since the research incorporates machine learning algorithms for predictive control, model
performance must also be evaluated. This study uses coefficient of determination (R2) and Root
Mean Square Error (RMSE) to assess the predictive accuracy of the Random Forest and ANN
models. R2 indicates how well the model explains variability in the environmental data and plant
growth responses, while RMSE quantifies predictive error magnitude. These metrics ensure that
the AI model operates reliably and provides accurate control recommendations essential for
maintaining a stable greenhouse microclimate.

Efficiency and Yield Analysis

Resource-use efficiency is analyzed by calculating percentage reduction in water and energy
consumption using normalized metrics such as liters per kilogram of yield and kilowatt-hours per
growth cycle. This allows the study to assess sustainability improvements attributable to Al
control. Crop yield analysis includes evaluating fresh biomass, number of leaves, and productivity
per square meter. These indicators demonstrate whether AI-driven environmental stability
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translates into measurable yield improvements. The analysis also considers potential trade-offs,
such as whether reductions in resource usage affect crop performance or microclimate quality.

RESULTS AND DISCUSSION
Environmental Stability in AI-Enabled vs. Conventional Greenhouse

The first stage of analysis examined the environmental conditions maintained in both greenhouse
systems throughout the growing cycle. Maintaining a stable microclimate is a crucial factor
influencing plant photosynthesis, transpiration, and overall physiological performance. The Al-
enabled greenhouse was designed to regulate microclimatic factors using predictive algorithms,
allowing it to anticipate environmental fluctuations typical of tropical regions. By contrast, the
conventional greenhouse relied on manual adjustments, which tend to be reactive rather than
predictive.

Across the 45-day growing cycle, the Al system consistently maintained temperature and
humidity within optimal thresholds for lettuce growth (20—-26°C and 65-80% humidity). The
conventional greenhouse frequently exceeded optimal temperature ranges during daytime peaks
and experienced lower humidity during dry periods. Light intensity and CO2 concentration also
showed greater stability in the Al-controlled structure. The data in Table 1 demonstrate that the
Al-enabled predictive system was more capable of maintaining environmental parameters within
crop-specific ideal ranges. These stable conditions contribute to improved plant performance and
overall resilience to environmental stress.

Table 1. Average Environmental Parameters During Cultivation Cycle

Parameter Al Greenhouse Conventional Optimal
(Avg + SD) (Avg + SD) Range
Temperature (°C) 24.6 + 1.1 28.1+ 2.4 20-26
Humidity (%) 73.2 + 4.8 63.5 + 7.2 65—80
Light Intensity (lux) 11,420 + 1,150 9,280 + 1,760 10,000—12,000
CO2 (ppm) 468 + 34 412 + 43 400-800
Soil Moisture (%) 38.7+3.1 20.4 £ 4.5 35—45

The results confirm that predictive Al control enhances microclimate consistency, reducing
environmental stress that commonly affects tropical greenhouse crops. Environmental stability
is a major factor explaining why the AI greenhouse later demonstrated stronger vegetative growth
and higher biomass production. These findings align with global studies showing that predictive
climate control can markedly increase plant physiological efficiency.

Water Consumption and Irrigation Efficiency

Water efficiency is a major challenge in tropical horticulture, particularly during dry seasons or
in areas with limited freshwater availability. The Al-enabled system used real-time soil moisture
data combined with predictive evapotranspiration models to optimize irrigation frequency. This
allowed the greenhouse to provide water when plants required it most, eliminating over-irrigation
and minimizing losses through leaching.

The conventional greenhouse, using manual watering based on farmer judgment, showed greater
variation in water application, often irrigating more than necessary during peak heat periods. As
aresult, total water consumption was significantly higher. Table 2 summarizes the average water-
use metrics for both systems. The Al-enabled greenhouse used nearly 40% less water per
kilogram of produce. This substantial increase in efficiency demonstrates the potential of AI-
driven irrigation management to support sustainable agriculture in water-limited tropical
regions.

Table 2. Water Consumption and Irrigation Efficiency

Variable | AI Greenhouse | Conventional | Efficiency Difference
Total Water Used (L/cycle) | 308 | 498 | —38.2%
Water Use per m2 (L/m2) | 12.8 | 20.7 | —38.1%
Water Use per kg Yield (L/kg) | 20.1 | 47.6 | —38.8%
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The reduction in water use did not negatively affect crop health or yield; instead, it improved root-
zone moisture stability, leading to healthier growth. These results illustrate that smart irrigation
systems are highly beneficial for tropical agriculture, where rainfall variability is increasing due
to climate change.

Energy Consumption Patterns

Energy use was also monitored to determine whether the Al system improved resource efficiency
in greenhouse climate management. Energy demand in tropical greenhouses is influenced by
ventilation needs, cooling fans, and supplemental LED lighting used during low-light periods. In
the Al-enabled greenhouse, energy systems were activated only when environmental conditions
deviated from the predicted optimal ranges. Conversely, the conventional greenhouse operated
ventilation fans and lighting on fixed schedules, regardless of actual microclimate requirements.
Table 3 presents a comparison of energy consumption between both systems.

Table 3. Energy Consumption Comparison

Variable | AI Greenhouse | Conventional | Efficiency Difference
Total Energy Used (kWh/cycle) | 114.2 | 131.5 | -13.1%
Energy per m2 (kWh/m?2) | 4.75 | 5.47 | -13.2%
Energy per kg Yield (kWh/kg) | 1.08 | 1.41 | —23.4%

The Al system demonstrated a 13% reduction in total energy use and a 23% increase in energy
efficiency per kilogram of yield. These improvements highlight the potential of predictive
scheduling to lower operating costs, supporting long-term economic sustainability of greenhouse
operations.

Plant Growth Performance

Vegetative growth indicators including plant height, number of leaves, and canopy width—were
measured weekly. Plants in the AI greenhouse showed faster and more uniform growth due to
stable microclimate conditions and optimized irrigation. Table 4 depicts the final growth metrics.

Comparison of Lettuce Growth Indicators
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Figure 1. Lettuce Growth Indicators

The differences indicate that Al-enabled management supports better vegetative development.
Larger canopies and higher leaf counts suggest improved photosynthetic capacity and nutrient
uptake. These performance enhancements directly contribute to higher biomass accumulation in
the final harvest.

Final Yield and Productivity

Yield was assessed by measuring fresh weight per plant and total production per square meter.
As expected, the improved environmental stability and resource efficiency in the Al-enabled
system translated into significantly higher yields. Lettuce grown under AI control produced
heavier heads and more biomass overall. Table 5 compares the productivity outcomes of both
greenhouse systems.
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Table 5. Yield and Productivity Outcomes

Yield Indicator | AI Greenhouse | Conventional | Improvement (%)
Fresh Weight per Plant (g) | 184.1+15.9 | 143.7+17.8 | +28.1%
Total Yield (kg/m2) | 3.71 | 2.87 | +29.3%
Marketable Yield (%) | 95.4% | 87.2% ] +9.4%

These results confirm that predictive AI control provides substantial productivity benefits,
offering nearly 30% higher yield than conventional practices. Higher marketable yield further
indicates better uniformity and reduced instances of physiological defects such as tip burn or wilt.

AT Model Performance Evaluation

To ensure that the predictive control system functioned accurately, model performance was
evaluated using standard machine learning metrics. Random Forest and ANN models were
trained on historical greenhouse data and validated using a 30% test dataset. Table 6 provides an
overview of the model accuracy.

Table 6. AT Model Predictive Accuracy

Model | R2 Score | RMSE | MAE | Interpretation
Random Forest | 0.91 | 1.84 | 1.21 | Excellent predictive accuracy
ANN | 0.88 | 217 | 139 | Verygood predictive accuracy

Both algorithms performed well, with Random Forest showing slightly higher predictive strength.
High accuracy indicates that the system reliably forecasts environmental changes and plant
needs, making its control decisions both valid and effective. The strong performance of both
models supports their suitability for real-world greenhouse management, where rapid response
to changing environmental conditions is critical. Overall, the AI system's predictive accuracy
aligns with improvements observed in microclimate stability, resource efficiency, and crop
productivity.

Discussion
Microclimate Regulation and Environmental Consistency

The implementation of Al-based predictive control brought noticeable improvements to the
stability of environmental variables within the greenhouse (Li et al., 2025; Hu & You, 2024).
Rather than responding only after deviations occurred, the predictive system adjusted
ventilation, irrigation, and lighting based on anticipated changes, resulting in smoother
fluctuations. This contributed to a more uniform internal environment that aligned more closely
with the physiological requirements of lettuce. Meanwhile, the conventional setup showed greater
exposure to heat spikes and humidity drops conditions often observed in tropical regions due to
sudden shifts in weather patterns. Consistent environmental conditions are crucial because
lettuce is highly sensitive to fluctuations in temperature and humidity.

The Al-controlled system moderated these variables more effectively, minimizing the extremes
that typically stress plants and slow metabolic processes. For example, the conventional
greenhouse frequently experienced midday overheating, while the AI system compensated for
incoming heat through earlier activation of ventilation. This proactive management minimized
periods when plants were pushed outside their comfort range. The overall trend revealed that the
Al-enabled greenhouse maintained environmental parameters with tighter variability bands,
which is essential for optimizing photosynthesis and preventing physiological disorders
(Mohmed et al., 2025). These results reaffirm the role of predictive technology in maintaining
stable growing conditions, particularly under the volatile climate conditions common to tropical
agricultural zones.

Water Dynamics and Improvements in Irrigation Efficiency

The differences in water use between the two systems highlighted the impact of integrating
predictive analytics with irrigation scheduling (Liang et al., 2020). In the Al-driven greenhouse,
irrigation events were triggered by a combination of real-time soil moisture measurements and
forecasts of plant water demand. This resulted in water being supplied only when depletion
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reached thresholds associated with optimal root-zone conditions. As a result, irrigation frequency
was lower, yet moisture remained within an ideal range for plant uptake. By contrast, the
conventional greenhouse relied on routine manual irrigation, which tended to overcompensate
during hotter days. This approach created periods of excessive soil moisture followed by steeper
drops, contributing to inefficient water distribution.

In some instances, surplus water percolated beyond the root zone, reducing water-use efficiency
and potentially washing away nutrients. Yang et al. (2017) said that, the difference in
consumption between the two greenhouses is not only a matter of volume but also the quality of
irrigation timing. The final comparison demonstrated that the Al-assisted system significantly
reduced water input without compromising crop performance. These outcomes indicate that
predictive irrigation can balance conservation efforts with productivity targets, making it highly
relevant in tropical environments where water scarcity increasingly challenges agricultural
sustainability.

Energy Utilization and Operational Efficiency

Beyond water savings, the study also identified meaningful reductions in energy consumption
attributable to the Al system’s ability to regulate equipment operation more intelligently. Rather
than activating fans and lighting on fixed schedules, the AT model engaged these devices based
on forecasted needs. This produced shorter operating periods and reduced instances of
unnecessary equipment use particularly during nights with adequate natural cooling or mildly
overcast days where supplemental lighting was not required.

In contrast, the conventional greenhouse displayed a more rigid operational pattern, which often
resulted in energy being spent even when environmental conditions did not justify full system
operation. Over the duration of the growth cycle, this difference translated into marked energy
savings. Notably, energy efficiency improved further when evaluated relative to total crop yield,
underscoring that the AI system not only reduced consumption but also increased output per unit
of electricity. These findings demonstrate that predictive control can help optimize energy
demands in small-scale tropical greenhouse production. The reduction in energy intensity is
especially relevant for growers seeking to lower operational costs or integrate renewable energy
systems.

Growth Responses and Plant Development Indicators

The growth measurements revealed clear distinctions in plant development between the two
systems. Lettuce grown under predictive control exhibited more vigorous vegetative growth,
reflected in greater height, larger leaf numbers, and wider canopy spread. These advantages
reflect the combined impact of stable microclimatic conditions and optimized water availability.
Plants experienced fewer environmental stresses, allowing them to maintain steady metabolic
activity and consistent leaf expansion throughout the growth cycle. In the conventional
greenhouse, inconsistent moisture levels and exposure to above-optimal temperature peaks
appeared to moderate growth rates. Fluctuations in the microenvironment contributed to more
variable plant sizes and, in some cases, reduced uniformity across the crop stand. These patterns
are common in settings where environmental control is limited or dependent on manual
interventions that cannot respond instantaneously to changing weather conditions. Overall, the
growth data confirmed that predictive environmental management enhances physiological
performance. The improvements observed in vegetative indicators provided early evidence of the
yield differences later confirmed during harvest assessment.

Productivity Gains and Marketable Yield

When comparing yield outcomes, the Al-regulated system delivered a significantly higher fresh
weight per plant and greater total production per square meter. This yield advantage is directly
related to improved environmental consistency and efficient resource use earlier in the cycle.
Because lettuce growth is closely tied to photosynthetic efficiency and water availability, the stable
conditions maintained by the predictive system favored continuous biomass accumulation.
Additionally, the proportion of marketable lettuce defined by acceptable size, shape, and leaf
quality was higher in the AI greenhouse. Reduced exposure to heat stress and water imbalance
led to fewer defects such as leaf edge burn or wilting. Meanwhile, the conventional greenhouse
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displayed a higher proportion of plants falling outside market standards, reflecting the effects of
environmental fluctuations on final quality. These outcomes suggest that beyond increasing
quantity, predictive control contributes to producing more uniform and saleable crops. This is an
essential consideration for commercial operations where marketability directly affects
profitability.

Machine Learning Accuracy and System Reliability

The evaluation of model performance confirmed that the predictive algorithms were sufficiently
accurate to support real-time decision-making. Both Random Forest and ANN models achieved
strong accuracy scores, although Random Forest performed slightly better in terms of both
variance explanation and error reduction. These results indicate that the models effectively
captured the relationships between environmental conditions and desired control outputs. The
reliability of the predictions is crucial because the effectiveness of the entire system depends on
precise anticipation of environmental changes. High model accuracy reduced unnecessary
equipment activity and allowed timely interventions before conditions shifted beyond optimal
thresholds. This demonstrates the feasibility of applying such AI models in practical greenhouse
settings, particularly in climates where environmental conditions can change rapidly. The strong
performance of the machine learning models reinforces the overall conclusion that predictive AI-
driven systems can serve as dependable tools for optimizing controlled-environment agriculture
in tropical regions.

CONCLUSION

The findings of this study demonstrate that Al-enabled predictive control significantly enhances
the performance of tropical greenhouse farming by maintaining a more stable microclimate,
improving the efficiency of water and energy use, and increasing both the quantity and quality of
crop yield. Through proactive regulation of temperature, humidity, lighting, and irrigation based
on real-time and forecasted conditions, the AI system consistently supported optimal
physiological growth conditions, resulting in healthier plants, higher biomass accumulation, and
a greater proportion of marketable produce. These improvements, combined with substantial
resource savings and high predictive accuracy of the machine learning models, indicate that AlI-
driven greenhouse management is a viable and effective approach for advancing sustainable and
productive horticulture in tropical regions.
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