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ABSTRACT 

Purpose: This study aims to evaluate the effectiveness of an AI-enabled 
predictive control system in enhancing environmental stability, resource 
efficiency, and crop productivity within tropical greenhouse farming. 

Subjects and Methods: The research was conducted using a 4 × 6-meter 
greenhouse prototype integrating IoT sensors and machine learning 
algorithms, including Random Forest and Artificial Neural Networks. 
Lettuce (Lactuca sativa) served as the model crop. The AI-driven greenhouse 
was compared with a conventional manually operated system across a full 
cultivation cycle. Data collected included microclimate parameters, water 
and energy consumption, plant growth indicators, and final yield. 

Results: The AI-enabled greenhouse maintained more consistent 
environmental conditions, keeping temperature, humidity, light intensity, 
and soil moisture within optimal ranges. Water use was reduced by 
approximately 38%, and energy consumption decreased by 13% compared 
to the conventional system. Plants grown under predictive control exhibited 
stronger vegetative growth, with notable increases in height, leaf number, 
and canopy size. Yield improved by nearly 30%, accompanied by higher 
marketable quality. Predictive models demonstrated strong accuracy, 
supporting reliable real-time decision-making. 

Conclusions: The results confirm that AI-based predictive control 
substantially improves greenhouse performance in tropical environments, 
offering a sustainable and efficient solution for modern horticultural 
production. 
 

 

INTRODUCTION 

Global agricultural systems are under increasing pressure as climate variability intensifies, 
natural resources become more limited, and food demand continues to rise (Vos & Bellù, 2019; 
Khatri et al., 2024). These pressures are particularly evident in tropical regions, where high 
temperatures, humidity fluctuations, and unpredictable weather patterns frequently disrupt crop 
productivity. In response to these challenges, controlled-environment agriculture (CEA), 
especially greenhouse cultivation, has emerged as a promising approach for stabilizing plant 
growth conditions and enhancing yield (Ojo & Zahid, 2022; Shamshiri et al., 2018). However, 
conventional greenhouse systems remain heavily dependent on manual adjustments and static 
control mechanisms, making them insufficiently adaptive in regions characterized by rapid and 
nonlinear environmental fluctuations. 

In the past decade, technological innovations such as Internet of Things (IoT) devices and sensor-
embedded systems have begun to transform greenhouse operations. By enabling real-time data 
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collection on key environmental variables temperature, humidity, light intensity, CO₂ 
concentration, and soil moisture these systems provide farmers with a more comprehensive 
understanding of plant needs and environmental dynamics. Despite these advances, most 
existing greenhouse systems still rely on rule-based or threshold-driven control strategies, which 
lack the flexibility to respond optimally to sudden climatic variations or to anticipate future 
conditions. 

Ben Ayed & Hanana (2021) and Ruiz-Real et al. (2020) said that, artificial Intelligence (AI), 
particularly machine learning and deep learning techniques, has introduced a paradigm shift in 
the agricultural sector. AI-driven predictive control models are capable of identifying patterns, 
forecasting environmental changes, and generating adaptive control decisions that surpass the 
capabilities of traditional systems. By integrating historical environmental data, plant growth 
indicators, and real-time sensor inputs, AI can optimize resource allocation and ensure that crops 
are exposed to consistently favorable microclimatic conditions. 

The application of AI in greenhouse farming aligns with the broader movement toward precision 
agriculture, which emphasizes optimized resource use and data-informed decision-making 
(Azlan et al., 2025). Studies have demonstrated that AI-driven control systems can significantly 
enhance water-use efficiency, energy consumption, and crop productivity. However, most 
previous studies have focused on greenhouses in temperate regions, where environmental 
variations are relatively mild. Tropical environments present a different set of complexities higher 
temperatures, excessive humidity, and sudden weather shifts that require more robust and 
responsive control approaches. 

Greenhouse farming in tropical regions faces persistent challenges in maintaining stable 
environmental conditions (McCartney & Lefsrud, 2018; Jensen, 2001). Excessive heat can 
impede photosynthesis and disrupt plant metabolism, while low humidity levels accelerate 
transpiration and create water stress. Conversely, overly high humidity increases the risk of 
fungal diseases. Similarly, insufficient or excessive light conditions can reduce photosynthetic 
efficiency and slow biomass accumulation. These challenges underscore the necessity of 
predictive and adaptive control systems that can maintain microclimatic stability despite external 
volatility. 

AI-enabled predictive control systems address these issues by learning the complex interactions 
between environmental parameters and plant responses. Algorithms such as Random Forest and 
Artificial Neural Networks (ANN) can interpret sensor data and perform real-time predictions 
about plant needs, enabling precise adjustments to irrigation, ventilation, and lighting 
(Mekonnen et al., 2019). These systems offer the ability not only to respond to current conditions 
but also to anticipate future fluctuations, ensuring consistent microclimate regulation. 

Resource efficiency is a critical component of sustainable agricultural development, particularly 
in areas where water and energy availability is limited. Ghani et al. (2019) said that, greenhouse 
systems frequently consume large amounts of water for irrigation and significant energy for 
ventilation and artificial lighting. AI-driven systems can significantly reduce unnecessary 
resource usage by delivering irrigation based on predicted evapotranspiration, adjusting 
ventilation in response to heat accumulation trends, and optimizing lighting schedules to meet 
crops’ photosynthetic requirements without waste. 

Moreover, predictive AI models can improve crop yield by aligning environmental parameters 
with optimal physiological conditions. For instance, maintaining temperature and humidity 
within specific thresholds for each growth stage supports faster development, better nutrient 
uptake, and increased biomass production (Walne & Reddy, 2022). AI-based systems facilitate 
this precision by continuously refining control strategies based on real-time performance data 
and plant growth outcomes. 

The integration of AI into tropical greenhouse systems also offers broader socio-economic 
implications (Hoseinzadeh & Garcia, 2024). In many tropical countries, agricultural productivity 
is hindered by limited access to advanced technologies, insufficient digital infrastructure, and low 
technological literacy among farmers. Demonstrating the effectiveness and practicality of AI-
enabled greenhouse management provides a pathway for modernizing agricultural practices in 
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resource-constrained environments, while also improving food security (Abedalrhman & Alzaydi, 
2025). 

Despite the potential benefits, the implementation of AI-driven predictive control in tropical 
greenhouse farming remains underexplored. Few empirical studies have evaluated how such 
systems perform under real tropical conditions, particularly in terms of environmental stability, 
resource efficiency, and yield improvement (Scopel et al., 2013). This gap highlights the need for 
experimental validation of AI-enabled systems in real-world settings to determine their 
scalability and long-term feasibility. 

Prototypes that integrate IoT sensors with AI algorithms serve as essential testing grounds for 
evaluating the functionality of predictive models. These systems provide opportunities to assess 
how AI responds to dynamic environmental inputs, how accurately it predicts environmental 
needs, and how effectively it regulates greenhouse conditions. Through such experimental setups, 
researchers can evaluate the degree to which AI improves microclimate stability and crop 
performance compared with traditional manual or rule-based controls. 

Early results from experimental studies have shown promising outcomes, with AI-based systems 
demonstrating enhanced control precision and significant reductions in water and energy 
consumption (Alenezi & Alabaiadly, 2025). However, the performance of these systems in cycles 
of crop growth, variable weather conditions, and different plant species requires further 
examination. Understanding how AI models adapt over time and across conditions is essential 
for determining their practical utility for farmers. 

Another crucial element in implementing AI-enabled greenhouse systems is the integration of 
predictive analytics with actuators such as fans, pumps, and LED lighting (Hanafi et al., 2024). 
These components must respond quickly and accurately to AI-generated commands to maintain 
environmental stability. Poor integration or delays in system responses can diminish the 
effectiveness of predictive control and lead to suboptimal plant growth. Therefore, evaluating 
both software performance and hardware synchronization is vital. 

Given the increasing urgency for sustainable agricultural solutions in tropical regions, AI-enabled 
predictive control represents a transformative opportunity. By bridging the gap between 
environmental variability and optimal crop conditions, AI-driven systems have the potential to 
reshape tropical horticulture, enhancing yields while minimizing environmental impact. The 
growing body of research in this field indicates that such technologies can be successfully tailored 
to tropical climates with appropriate system design and calibration. 

This study aims to contribute to the emerging literature by examining the effectiveness of an AI-
enabled predictive control system designed specifically for greenhouse farming in tropical 
environments. Through a combination of IoT-based monitoring, machine learning algorithms, 
and automated actuation, this research evaluates how AI can improve environmental stability, 
increase resource-use efficiency, and enhance crop yield (Eze et al., 2025; Dhanaraj et al., 2025). 
The findings are expected to provide empirical evidence of the feasibility and benefits of 
implementing AI-driven smart greenhouse systems in tropical agricultural contexts. 

METHODOLOGY 

Research Design 

This study employs an applied experimental research design, which is the most appropriate 
approach for evaluating technological interventions such as AI-based predictive control systems. 
The research focuses on developing, implementing, and testing a smart greenhouse prototype 
equipped with Internet of Things (IoT) sensors and Artificial Intelligence algorithms in a real-
world tropical environment. Through this design, the study aims to measure the performance of 
the AI-enabled system by comparing environmental stability, resource-use efficiency, and crop 
yield against traditional greenhouse management practices. The experimental design allows for 
controlled conditions while still capturing natural environmental variability, ensuring that results 
reflect realistic growing scenarios typical of tropical agricultural settings. 

System Development and Implementation 
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The method includes the integration of IoT sensors, actuators, and machine learning algorithms 
to construct an automated greenhouse control system. Sensors continuously monitor 
environmental parameters such as temperature, humidity, light intensity, soil moisture, and CO₂ 
concentration, while actuators including irrigation pumps, ventilation fans, and LED lights 
respond to AI-driven instructions. Historical and real-time data are used to train and operate 
machine learning models such as Random Forest and Artificial Neural Networks (ANN), enabling 
predictive control that adjusts environmental conditions before deviations from optimal ranges 
occur. The system is deployed on an experimental greenhouse plot, where its performance is 
tested across multiple crop cycles using lettuce as the model plant. 

Experimental Procedure 

The experimental setup consists of two greenhouse conditions: an AI-enabled smart greenhouse 
and a conventional manually operated greenhouse, both cultivated under identical crop type and 
planting density. Each greenhouse is monitored for a fixed duration representing a full lettuce 
growth cycle. The AI-driven greenhouse relies on predictive control algorithms to regulate 
microclimate conditions and resource applications, while the conventional greenhouse follows 
standard localized management practices. Key variables measured during the experiment include 
microclimate parameters, water consumption, energy usage, plant height, number of leaves, fresh 
weight, and overall productivity per square meter. This comparative experimental arrangement 
allows for meaningful evaluation of the effects of AI-enabled control on environmental stability 
and crop performance. 

Data Analysis Technique 

Descriptive Analysis 

Descriptive statistical analysis is performed to summarize the environmental conditions, resource 
usage, and plant growth outcomes recorded in both greenhouse systems. Mean values, standard 
deviations, and parameter ranges are used to illustrate the stability and consistency of 
microclimate conditions maintained by each system. This analysis provides an overview of how 
closely each greenhouse aligns with the optimal conditions required for lettuce growth. 
Comparative tables and graphical visualizations further support interpretation of system 
performance. 

Comparative Statistical Testing 

To determine whether the differences observed between the AI-enabled and conventional 
greenhouse systems are statistically significant, the study employs an independent samples t-test. 
This technique is appropriate because the two systems represent independent experimental 
conditions with continuous outcome variables such as water use, energy consumption, plant 
height, and fresh biomass. The t-test evaluates whether improvements in environmental stability, 
resource efficiency, and crop yield can be attributed to the AI-based predictive control rather than 
random variation. A significance level (typically α = 0.05) is used to assess statistical differences. 

AI Model Evaluation Metrics 

Since the research incorporates machine learning algorithms for predictive control, model 
performance must also be evaluated. This study uses coefficient of determination (R²) and Root 
Mean Square Error (RMSE) to assess the predictive accuracy of the Random Forest and ANN 
models. R² indicates how well the model explains variability in the environmental data and plant 
growth responses, while RMSE quantifies predictive error magnitude. These metrics ensure that 
the AI model operates reliably and provides accurate control recommendations essential for 
maintaining a stable greenhouse microclimate. 

Efficiency and Yield Analysis 

Resource-use efficiency is analyzed by calculating percentage reduction in water and energy 
consumption using normalized metrics such as liters per kilogram of yield and kilowatt-hours per 
growth cycle. This allows the study to assess sustainability improvements attributable to AI 
control. Crop yield analysis includes evaluating fresh biomass, number of leaves, and productivity 
per square meter. These indicators demonstrate whether AI-driven environmental stability 
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translates into measurable yield improvements. The analysis also considers potential trade-offs, 
such as whether reductions in resource usage affect crop performance or microclimate quality.  

RESULTS AND DISCUSSION 

Environmental Stability in AI-Enabled vs. Conventional Greenhouse 

The first stage of analysis examined the environmental conditions maintained in both greenhouse 
systems throughout the growing cycle. Maintaining a stable microclimate is a crucial factor 
influencing plant photosynthesis, transpiration, and overall physiological performance. The AI-
enabled greenhouse was designed to regulate microclimatic factors using predictive algorithms, 
allowing it to anticipate environmental fluctuations typical of tropical regions. By contrast, the 
conventional greenhouse relied on manual adjustments, which tend to be reactive rather than 
predictive. 

Across the 45-day growing cycle, the AI system consistently maintained temperature and 
humidity within optimal thresholds for lettuce growth (20–26°C and 65–80% humidity). The 
conventional greenhouse frequently exceeded optimal temperature ranges during daytime peaks 
and experienced lower humidity during dry periods. Light intensity and CO₂ concentration also 
showed greater stability in the AI-controlled structure. The data in Table 1 demonstrate that the 
AI-enabled predictive system was more capable of maintaining environmental parameters within 
crop-specific ideal ranges. These stable conditions contribute to improved plant performance and 
overall resilience to environmental stress. 

Table 1. Average Environmental Parameters During Cultivation Cycle 

Parameter 
AI Greenhouse  

(Avg ± SD) 
Conventional  

(Avg ± SD) 
Optimal 
Range 

Temperature (°C) 24.6 ± 1.1 28.1 ± 2.4 20–26 
Humidity (%) 73.2 ± 4.8 63.5 ± 7.2 65–80 

Light Intensity (lux) 11,420 ± 1,150 9,280 ± 1,760 10,000–12,000 
CO₂ (ppm) 468 ± 34 412 ± 43 400–800 

Soil Moisture (%) 38.7 ± 3.1 29.4 ± 4.5 35–45 

The results confirm that predictive AI control enhances microclimate consistency, reducing 
environmental stress that commonly affects tropical greenhouse crops. Environmental stability 
is a major factor explaining why the AI greenhouse later demonstrated stronger vegetative growth 
and higher biomass production. These findings align with global studies showing that predictive 
climate control can markedly increase plant physiological efficiency. 

Water Consumption and Irrigation Efficiency 

Water efficiency is a major challenge in tropical horticulture, particularly during dry seasons or 
in areas with limited freshwater availability. The AI-enabled system used real-time soil moisture 
data combined with predictive evapotranspiration models to optimize irrigation frequency. This 
allowed the greenhouse to provide water when plants required it most, eliminating over-irrigation 
and minimizing losses through leaching. 

The conventional greenhouse, using manual watering based on farmer judgment, showed greater 
variation in water application, often irrigating more than necessary during peak heat periods. As 
a result, total water consumption was significantly higher. Table 2 summarizes the average water-
use metrics for both systems. The AI-enabled greenhouse used nearly 40% less water per 
kilogram of produce. This substantial increase in efficiency demonstrates the potential of AI-
driven irrigation management to support sustainable agriculture in water-limited tropical 
regions. 

Table 2. Water Consumption and Irrigation Efficiency 

Variable AI Greenhouse Conventional Efficiency Difference 
Total Water Used (L/cycle) 308 498 –38.2% 
Water Use per m² (L/m²) 12.8 20.7 –38.1% 

Water Use per kg Yield (L/kg) 29.1 47.6 –38.8% 
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The reduction in water use did not negatively affect crop health or yield; instead, it improved root-
zone moisture stability, leading to healthier growth. These results illustrate that smart irrigation 
systems are highly beneficial for tropical agriculture, where rainfall variability is increasing due 
to climate change. 

Energy Consumption Patterns 

Energy use was also monitored to determine whether the AI system improved resource efficiency 
in greenhouse climate management. Energy demand in tropical greenhouses is influenced by 
ventilation needs, cooling fans, and supplemental LED lighting used during low-light periods. In 
the AI-enabled greenhouse, energy systems were activated only when environmental conditions 
deviated from the predicted optimal ranges. Conversely, the conventional greenhouse operated 
ventilation fans and lighting on fixed schedules, regardless of actual microclimate requirements. 
Table 3 presents a comparison of energy consumption between both systems. 

Table 3. Energy Consumption Comparison 

Variable AI Greenhouse Conventional Efficiency Difference 
Total Energy Used (kWh/cycle) 114.2 131.5 –13.1% 

Energy per m² (kWh/m²) 4.75 5.47 –13.2% 
Energy per kg Yield (kWh/kg) 1.08 1.41 –23.4% 

The AI system demonstrated a 13% reduction in total energy use and a 23% increase in energy 
efficiency per kilogram of yield. These improvements highlight the potential of predictive 
scheduling to lower operating costs, supporting long-term economic sustainability of greenhouse 
operations. 

Plant Growth Performance 

Vegetative growth indicators including plant height, number of leaves, and canopy width—were 
measured weekly. Plants in the AI greenhouse showed faster and more uniform growth due to 
stable microclimate conditions and optimized irrigation. Table 4 depicts the final growth metrics. 

 

Figure 1. Lettuce Growth Indicators 

The differences indicate that AI-enabled management supports better vegetative development. 
Larger canopies and higher leaf counts suggest improved photosynthetic capacity and nutrient 
uptake. These performance enhancements directly contribute to higher biomass accumulation in 
the final harvest. 

Final Yield and Productivity 

Yield was assessed by measuring fresh weight per plant and total production per square meter. 
As expected, the improved environmental stability and resource efficiency in the AI-enabled 
system translated into significantly higher yields. Lettuce grown under AI control produced 
heavier heads and more biomass overall. Table 5 compares the productivity outcomes of both 
greenhouse systems. 
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Table 5. Yield and Productivity Outcomes 

Yield Indicator AI Greenhouse Conventional Improvement (%) 
Fresh Weight per Plant (g) 184.1 ± 15.9 143.7 ± 17.8 +28.1% 

Total Yield (kg/m²) 3.71 2.87 +29.3% 
Marketable Yield (%) 95.4% 87.2% +9.4% 

These results confirm that predictive AI control provides substantial productivity benefits, 
offering nearly 30% higher yield than conventional practices. Higher marketable yield further 
indicates better uniformity and reduced instances of physiological defects such as tip burn or wilt. 

AI Model Performance Evaluation 

To ensure that the predictive control system functioned accurately, model performance was 
evaluated using standard machine learning metrics. Random Forest and ANN models were 
trained on historical greenhouse data and validated using a 30% test dataset. Table 6 provides an 
overview of the model accuracy. 

Table 6. AI Model Predictive Accuracy 

Model R² Score RMSE MAE Interpretation 
Random Forest 0.91 1.84 1.21 Excellent predictive accuracy 

ANN 0.88 2.17 1.39 Very good predictive accuracy 

Both algorithms performed well, with Random Forest showing slightly higher predictive strength. 
High accuracy indicates that the system reliably forecasts environmental changes and plant 
needs, making its control decisions both valid and effective. The strong performance of both 
models supports their suitability for real-world greenhouse management, where rapid response 
to changing environmental conditions is critical. Overall, the AI system's predictive accuracy 
aligns with improvements observed in microclimate stability, resource efficiency, and crop 
productivity. 

Discussion 

Microclimate Regulation and Environmental Consistency 

The implementation of AI-based predictive control brought noticeable improvements to the 
stability of environmental variables within the greenhouse (Li et al., 2025; Hu & You, 2024). 
Rather than responding only after deviations occurred, the predictive system adjusted 
ventilation, irrigation, and lighting based on anticipated changes, resulting in smoother 
fluctuations. This contributed to a more uniform internal environment that aligned more closely 
with the physiological requirements of lettuce. Meanwhile, the conventional setup showed greater 
exposure to heat spikes and humidity drops conditions often observed in tropical regions due to 
sudden shifts in weather patterns. Consistent environmental conditions are crucial because 
lettuce is highly sensitive to fluctuations in temperature and humidity.  

The AI-controlled system moderated these variables more effectively, minimizing the extremes 
that typically stress plants and slow metabolic processes. For example, the conventional 
greenhouse frequently experienced midday overheating, while the AI system compensated for 
incoming heat through earlier activation of ventilation. This proactive management minimized 
periods when plants were pushed outside their comfort range. The overall trend revealed that the 
AI-enabled greenhouse maintained environmental parameters with tighter variability bands, 
which is essential for optimizing photosynthesis and preventing physiological disorders 
(Mohmed et al., 2025). These results reaffirm the role of predictive technology in maintaining 
stable growing conditions, particularly under the volatile climate conditions common to tropical 
agricultural zones. 

Water Dynamics and Improvements in Irrigation Efficiency 

The differences in water use between the two systems highlighted the impact of integrating 
predictive analytics with irrigation scheduling (Liang et al., 2020). In the AI-driven greenhouse, 
irrigation events were triggered by a combination of real-time soil moisture measurements and 
forecasts of plant water demand. This resulted in water being supplied only when depletion 
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reached thresholds associated with optimal root-zone conditions. As a result, irrigation frequency 
was lower, yet moisture remained within an ideal range for plant uptake. By contrast, the 
conventional greenhouse relied on routine manual irrigation, which tended to overcompensate 
during hotter days. This approach created periods of excessive soil moisture followed by steeper 
drops, contributing to inefficient water distribution.  

In some instances, surplus water percolated beyond the root zone, reducing water-use efficiency 
and potentially washing away nutrients. Yang et al. (2017) said that, the difference in 
consumption between the two greenhouses is not only a matter of volume but also the quality of 
irrigation timing. The final comparison demonstrated that the AI-assisted system significantly 
reduced water input without compromising crop performance. These outcomes indicate that 
predictive irrigation can balance conservation efforts with productivity targets, making it highly 
relevant in tropical environments where water scarcity increasingly challenges agricultural 
sustainability. 

Energy Utilization and Operational Efficiency 

Beyond water savings, the study also identified meaningful reductions in energy consumption 
attributable to the AI system’s ability to regulate equipment operation more intelligently. Rather 
than activating fans and lighting on fixed schedules, the AI model engaged these devices based 
on forecasted needs. This produced shorter operating periods and reduced instances of 
unnecessary equipment use particularly during nights with adequate natural cooling or mildly 
overcast days where supplemental lighting was not required. 

In contrast, the conventional greenhouse displayed a more rigid operational pattern, which often 
resulted in energy being spent even when environmental conditions did not justify full system 
operation. Over the duration of the growth cycle, this difference translated into marked energy 
savings. Notably, energy efficiency improved further when evaluated relative to total crop yield, 
underscoring that the AI system not only reduced consumption but also increased output per unit 
of electricity. These findings demonstrate that predictive control can help optimize energy 
demands in small-scale tropical greenhouse production. The reduction in energy intensity is 
especially relevant for growers seeking to lower operational costs or integrate renewable energy 
systems. 

Growth Responses and Plant Development Indicators 

The growth measurements revealed clear distinctions in plant development between the two 
systems. Lettuce grown under predictive control exhibited more vigorous vegetative growth, 
reflected in greater height, larger leaf numbers, and wider canopy spread. These advantages 
reflect the combined impact of stable microclimatic conditions and optimized water availability. 
Plants experienced fewer environmental stresses, allowing them to maintain steady metabolic 
activity and consistent leaf expansion throughout the growth cycle. In the conventional 
greenhouse, inconsistent moisture levels and exposure to above-optimal temperature peaks 
appeared to moderate growth rates. Fluctuations in the microenvironment contributed to more 
variable plant sizes and, in some cases, reduced uniformity across the crop stand. These patterns 
are common in settings where environmental control is limited or dependent on manual 
interventions that cannot respond instantaneously to changing weather conditions. Overall, the 
growth data confirmed that predictive environmental management enhances physiological 
performance. The improvements observed in vegetative indicators provided early evidence of the 
yield differences later confirmed during harvest assessment. 

Productivity Gains and Marketable Yield 

When comparing yield outcomes, the AI-regulated system delivered a significantly higher fresh 
weight per plant and greater total production per square meter. This yield advantage is directly 
related to improved environmental consistency and efficient resource use earlier in the cycle. 
Because lettuce growth is closely tied to photosynthetic efficiency and water availability, the stable 
conditions maintained by the predictive system favored continuous biomass accumulation. 
Additionally, the proportion of marketable lettuce defined by acceptable size, shape, and leaf 
quality was higher in the AI greenhouse. Reduced exposure to heat stress and water imbalance 
led to fewer defects such as leaf edge burn or wilting. Meanwhile, the conventional greenhouse 
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displayed a higher proportion of plants falling outside market standards, reflecting the effects of 
environmental fluctuations on final quality. These outcomes suggest that beyond increasing 
quantity, predictive control contributes to producing more uniform and saleable crops. This is an 
essential consideration for commercial operations where marketability directly affects 
profitability. 

Machine Learning Accuracy and System Reliability 

The evaluation of model performance confirmed that the predictive algorithms were sufficiently 
accurate to support real-time decision-making. Both Random Forest and ANN models achieved 
strong accuracy scores, although Random Forest performed slightly better in terms of both 
variance explanation and error reduction. These results indicate that the models effectively 
captured the relationships between environmental conditions and desired control outputs. The 
reliability of the predictions is crucial because the effectiveness of the entire system depends on 
precise anticipation of environmental changes. High model accuracy reduced unnecessary 
equipment activity and allowed timely interventions before conditions shifted beyond optimal 
thresholds. This demonstrates the feasibility of applying such AI models in practical greenhouse 
settings, particularly in climates where environmental conditions can change rapidly. The strong 
performance of the machine learning models reinforces the overall conclusion that predictive AI-
driven systems can serve as dependable tools for optimizing controlled-environment agriculture 
in tropical regions. 

CONCLUSION 

The findings of this study demonstrate that AI-enabled predictive control significantly enhances 
the performance of tropical greenhouse farming by maintaining a more stable microclimate, 
improving the efficiency of water and energy use, and increasing both the quantity and quality of 
crop yield. Through proactive regulation of temperature, humidity, lighting, and irrigation based 
on real-time and forecasted conditions, the AI system consistently supported optimal 
physiological growth conditions, resulting in healthier plants, higher biomass accumulation, and 
a greater proportion of marketable produce. These improvements, combined with substantial 
resource savings and high predictive accuracy of the machine learning models, indicate that AI-
driven greenhouse management is a viable and effective approach for advancing sustainable and 
productive horticulture in tropical regions. 
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