

Automation and Robotics in the Agrocomplex for Increased Agricultural Efficiency

Zahra Azhalia¹, Abda Usnadi¹

¹Teknologi Mekanisasi Pertanian, Politeknik Enjiniring Pertanian Indonesia (PEPI)

ARTICLE INFO

Received: 16 May 2025
Revised: 23 June 2025
Accepted: 20 July 2025
Available online: 28 July 2025

Keywords:
Automation
Robotics
Agricultural Efficiency
Productivity

Corresponding Author:
Zahra Azhalia

Email:
zahraazhalia@gmail.com

Copyright © 2025, Journal of Agrocomplex and Engineering, Under the license [CC BY- SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/)

ABSTRACT

Purpose: The elevation of the population standards of living, coupled with the need for feeding people all over the world, has led to the expansion of the agrocomplex together with the recognition of automation and robotics as the solution to the industry's many issues. The paper explores automation and robotics and its effects on agriculture in terms of rates of production; relative cost and effectiveness of automations and robotics in agricultural operations; and completing the set, efficiency rates of enterprises engaged in agricultural activities. As part of the data collection two research questions were posed and quantitative data was obtained from 120 respondents engaged in automated farming.

Subjects and Methods: As part of the data collection two research questions were posed and quantitative data was obtained from 120 respondents engaged in automated farming. To test the correlation between automation and agricultural performance indicators, descriptive and correlational statistics tools that include Pearson correlation coefficient, multiple regression analysis and analysis of variance were used.

Results: This study shows that through the proper demonstration of how automation enhances agricultural boosts sustainability and calls for better measures to embrace the change in the developing countries.

Conclusions: the findings the work established a high level of significant this Positive of the level of automation on the efficiency of agriculture, costs, and time of automation systems. Furthermore, the study reveals gaps such as high initial cost required for investments and a dearth of technical know-how as pulling factors that make it difficult for many farmers especially the smallholder farmers to embrace it. The findings are useful in filling the existing literature void on the monetisable effect of automation in farming, providing a quantitative research reference point in the future.

INTRODUCTION

According to Pawlak & Kołodziejczak (2020), modern Agriculture is a vital part of the world economy and of food security, but it has emerged with numerous challenges that put its sustainability and effectiveness in danger. As of the current population increased globally and expected to increase further to 9.7 billion people by 2050, there is pressure on producing more output in agriculture. The existing traditional farming can barely satisfy this demand especially due to labor constraints, climatic change influences and resource utilization constraints. In this regard, the implementation of automation and robotics in the agro complex became the focused strategic solution to increase agricultural productivity and efficiency (Shashkova et al., 2022).

Automation and robotics cover a broad and vast area of technologies that interconnect to improve different aspects of agriculture from planting to watering, from controlling pests and diseases to

harvesting among others. These innovations have shown a significant potency to enhance overall organizational performance as well as decrease resource intensity (Gong et al., 2023). automated vehicles autonomously operated throughout the fields that concurrently incorporate intelligent sensors capable of selecting produce or cutting with high accuracy that minimizes wastage and boosts the quality of the yields. self-driving irrigation systems and drones are also useful in applications to consider health and usage of water crops which remain a problem in the areas with scarcity of water (Barrile et al., 2022).

A major concern of the contemporary farming industry is shortage of labor where many developing countries, and indeed most of the developed ones, are experiencing a dwindling workforce among the farming communities majoring at old age and urbanization (Christiaensen et al., 2021). The problem can be solved through key automation since it is able to handle activities that require manual labor effectively. there is reduction of risks for example exposure to fertilizers, pesticides, diseases, harsh weather among others which are occasioned by use of robotics (Oyugi et al., 2021). Such developments do not only increase productivity but also bring improvements in the conditions of agriculture employees' working environments.

Ivanov (2021) said that, the effects of automation and robotics in this aspect of the economy also have an impact, as it will be shown. These technologies can save costs of labor, thus enhancing the revenue of farming businesses especially the widespread farming companies (Charania & Li, 2020). Their findings also indicate that high costs of investment in automation remain a major constraint for smallholder farmers to invest in automation. This particular issue, however, needs to be tackled with specific measures including; subsidies from the government or shared models which ensure and facilitate the use of technology (He & Chen, 2021). However, looking at the long-term impact, technical advantage such as yield quality and resource utilization in farm production outweighs the cost making automation a sustainable practice in modern farming.

Another important concern, in which automation and robotics expose great potential for significant improvement, is that of environmental sustainability (Oláh et al., 2020; Taiebat et al., 2018; Khosravani & Haghghi, 2022). Application of input like water, fertilizers, and pesticides has been reduced to the minimum due to precision agriculture that offers the use of robotics and automation to optimize available resources, thus reducing detrimental impact on the environment. Environmental factors such as temperature, humidity and pressure can be continually supervised and managed by automatic systems in order to maximize resource utilization and minimize resource wastage. drone carrying multispectral sensors can diagnose cases of pest attack or nutrient deficiencies for appropriate application of chemicals, hence reducing pollution (Abd et al., 2020).

However, the prospects of integrating automation and robotics in agriculture have an ingot of hurdles. Some challenges include: reduce availability, high costs, technical skills, less adoption of advanced technologies and poor changes management still persisted in the developing countries where most of the farmers still practice conventional farming. the application of these technologies demands good infrastructure such as power and reliable internet which are hard to come by in the villages (Ahmad & Zhang, 2021). Addressing these challenges requires collaboration among governments, technology suppliers and implementers, along with other players in the agricultural value chain to establish favourable conditions for innovation.

A considerable amount of theoretical and empirical literature has accumulated on the subject of automation and robotics in the past years as a result of which many areas of farming have been identified as having the potential for significant change. But the available literature still lacks quality investigations concerning the quantitative effects of these technologies on performance indicators, including yields, labor productivity, and profits. This research will therefore seek to fill this gap with empirical research data on the use of automation and robotics in the agrocomplex. Through surveys of those farms that have embraced these technologies, the study aims to come up with measurable determinations of the effects of the technologies and provide recommendations that may be helpful to the stakeholders in the agricultural industry.

This paper's conclusions advance knowledge on agricultural modernization's social implications and provide guidance on specific initiatives that can be implemented by governments and

development professionals. Accordingly, the quantitative data, utilized in the course of present study, emphasize the positive outcome of automation and robotics implementation within the sphere of agricultural production. Also, it raises the issue of the factors that prevent farmers from implementing them and the requirement for special efforts that focus on such practices, mainly beneficial to small producers. It means that the tendencies of automation and robotics' implementation in the agrocomplex are not just the technological breakthrough; they are the shift of the paradigm that has the relevant possibilities to form the future of the agriculture and its protection from the threats acting at the world level.

METHODOLOGY

This study employed a quantitative research design to examine the impact of automation and robotics on agricultural efficiency within the agrocomplex. The research process involved survey data collection and statistical analysis to assess the relationship between the implementation of automation technologies and key agricultural performance metrics, such as productivity, cost reduction, and operational efficiency.

Research Design

A descriptive and correlational research design was adopted to explore and quantify the relationship between automation and agricultural efficiency. This approach allowed for the identification of trends and patterns based on numerical data collected from agricultural practitioners and organizations that had implemented automated systems.

Participants and Sampling

The target population included agricultural enterprises, farm managers, and industry stakeholders actively engaged in utilizing automated machinery and robotic technologies. A purposive sampling technique was used to select 120 respondents from different regions. These participants were chosen based on their direct experience with automation in their agricultural operations.

Data Collection

A structured survey instrument was developed and distributed to the participants. The survey included closed-ended questions focusing on the use of automation tools, operational outcomes, and perceived benefits and challenges. The questionnaire was pilot-tested with a small group of respondents ($n = 10$) to ensure reliability and validity. Cronbach's alpha was calculated during the pilot testing, yielding a value of 0.85, indicating high internal consistency.

Variables and Measurement

The study examined three primary variables: 1) Independent Variable: Level of automation (measured by the type and extent of robotic systems implemented); 2) Dependent Variable: Agricultural efficiency (measured by productivity rates, cost savings, and operational time); Control Variables: Farm size, crop type, and geographical location. Each variable was quantified using Likert scale items and direct numerical entries where applicable.

Data Analysis

Data collected from the survey were analyzed using SPSS software. Descriptive statistics, including mean and standard deviation, were calculated to summarize the data. Inferential statistical techniques, such as Pearson's correlation and multiple regression analysis, were employed to test hypotheses and determine the strength and direction of the relationship between automation and agricultural efficiency. ANOVA was conducted to examine differences in efficiency levels across different categories of automation use.

RESULTS AND DISCUSSION

The implementation of automation and robotics in agriculture has been heralded as a transformative solution to address the pressing challenges of modern farming, including labor shortages, resource constraints, and environmental sustainability. As the global demand for food increases with population growth, there is a compelling need to enhance agricultural productivity and efficiency. This study investigates the effects of automation and robotics on agricultural

efficiency, focusing on key performance indicators such as productivity, cost reduction, and operational efficiency. By examining data collected from 120 agricultural enterprises utilizing automated technologies, the research aims to provide empirical insights into how these innovations contribute to improving farming operations. The following sections present the research results, which highlight the impact of automation on agricultural performance and the factors influencing its adoption in different farming contexts.

Table 1. Correlation Between Level of Automation and Agricultural Efficiency

Variable	Correlation Coefficient (r)	Significance Level (p-value)
Level of Automation and Agricultural Efficiency	0.72	0.001

Based on the results presented in Table 1, the analysis indicates a meaningful and positive relationship between the level of automation and agricultural efficiency. This finding suggests that higher adoption of automation technologies is associated with improvements in the effectiveness and productivity of agricultural activities. The statistically significant relationship confirms that the observed association is not due to random variation, highlighting the important role of automation in enhancing operational efficiency within the agricultural sector. These results imply that investments in automation can contribute to better resource utilization, streamlined processes, and improved overall performance in agricultural production systems.

Table 2. Impact of Automation on Agricultural Productivity

Variable	R ² (Variance Explained)	Significance Level (p-value)
Effect of Automation on Productivity	0.56	0.005

The results in Table 2 demonstrate that automation plays a substantial role in influencing agricultural productivity. The regression model indicates that automation contributes meaningfully to explaining variations in productivity levels, suggesting that technological integration is an important determinant of performance in the agricultural sector. The significant outcome of the analysis confirms the robustness of this relationship, implying that improvements in automation are likely to lead to measurable gains in productivity. This finding underscores the strategic importance of adopting automation technologies as a means to enhance efficiency and output in agricultural operations.

Table 3. Impact of Automation on Cost Savings

Variable	R ² (Variance Explained)	Significance Level (p-value)
Effect of Automation on Cost Savings	0.49	0.005

The findings presented in Table 3 indicate that automation has a meaningful influence on cost savings in agricultural operations. The regression results suggest that the adoption of automated systems contributes to more efficient use of resources and reductions in operational expenses. The significant relationship confirms that cost efficiencies associated with automation are systematic rather than incidental, highlighting automation as an effective strategy for improving financial performance. These results emphasize the potential of automation to support more sustainable and cost-effective agricultural management practices.

Table 4. Differences in Efficiency Across Automation Categories

Category	Mean Efficiency Score	F-statistic	Significance Level (p-value)
Low Automation	3.2	8.23	0.001
Moderate Automation	4.1		
High Automation	5.4		

The results in Table 4 reveal clear differences in agricultural efficiency across the different automation categories. The analysis shows that farms with higher levels of automation achieve superior efficiency compared to those with moderate or low levels of automation. This pattern suggests that greater integration of automated technologies leads to more effective farming operations, likely through improved process control, reduced manual intervention, and better resource management. The findings indicate that increasing the level of automation can provide tangible efficiency advantages and strengthen overall agricultural performance.

Table 5. Challenges in Adopting Automation

Challenge	Mean	Standard Deviation (SD)
High Initial Costs	4.7	0.5
Lack of Technical Expertise	4.4	0.6
Limited Infrastructure	4.2	0.7

The information in Table 5 highlights several key barriers that hinder the adoption of automation in agriculture. Respondents commonly identified financial constraints, limited technical skills, and inadequate supporting infrastructure as major obstacles. The consistency of responses indicates that these challenges are widely experienced rather than isolated cases, suggesting systemic issues in the adoption process. These findings imply that successful implementation of automation requires not only technological investment but also capacity building, technical training, and improvements in infrastructure to ensure that automation technologies can be effectively utilized.

Table 6. Perceived Benefits of Automation

Benefit	Mean	Standard Deviation (SD)
Improved Productivity	4.8	0.4
Labor Cost Reduction	4.6	0.5
Enhanced Crop Quality	4.5	0.6

The results in Table 6 indicate that respondents generally perceive automation as highly beneficial for agricultural operations. Automation is viewed as a key driver of improved performance, particularly in enhancing productivity, reducing dependence on labor, and improving the overall quality of agricultural output. The consistency in respondents' assessments suggests a shared understanding of the positive impacts of automation, reinforcing the view that technological adoption can deliver comprehensive benefits across operational, economic, and quality-related dimensions in agriculture.

Table 7. Impact of Farm Size on Automation Benefits

Farm Size	Mean Efficiency Score	Significance Level (p-value)
Small Farms	3.5	0.005
Medium Farms	4.0	
Large Farms	5.2	

The findings in Table 7 suggest that the benefits derived from automation vary according to farm size. Larger farming operations tend to experience greater advantages from automation, likely due to their stronger financial capacity, scale efficiencies, and ability to integrate advanced technologies into their production processes. In contrast, smaller farms face greater constraints in accessing and utilizing automation, particularly due to affordability concerns. This indicates that while automation offers substantial potential benefits, its impact is not evenly distributed, and targeted support or scalable solutions may be necessary to ensure that smaller farms can also benefit from technological advancements.

Table 8. Impact of Geographical Location on Efficiency

Region	Mean Efficiency Score	Significance Level (p-value)
Rural Regions (Low Infrastructure)	3.8	0.005
Urban Regions (Better Infrastructure)	4.7	

The results presented in Table 8 indicate that geographical location plays an important role in determining agricultural efficiency. Farms situated in areas with better infrastructure tend to operate more efficiently, as access to reliable utilities and connectivity supports the effective use of technology and modern farming practices. Conversely, limited infrastructure in rural areas constrains operational performance and reduces the potential gains from technological adoption. These findings highlight the need for infrastructure development as a critical enabler of efficiency improvements, particularly for farms located in less developed regions.

Discussion

The findings of this study highlight the significant relationship between automation and agricultural efficiency, offering insights into the effectiveness of automation in improving productivity and reducing costs within agricultural sectors. The results corroborate and expand on existing literature, providing new perspectives on the tangible benefits and challenges of adopting automation in agriculture, as well as the factors that influence its success. These results prove the previous data mentioned in the work of Kim et al. (2020), that increasing the level of automation can enhance the productivity of agricultural business by 0.72 , $p < 0.01$. With robotics in the farm for operations, timely intervention through the use of sensors, drones, and automation of irrigation leads to warranting productive farming. These findings are consistent with the conclusions made by Ng et al. (2021) who proposed that relying on automation and its potential to reduce errors and properly allocate resources would be beneficial. In addition, this study underscores the phenomenon of automation as an increasingly pivotal technology for agriculture with regard to the rising food needs of the global population and the scarcity of workers.

The regression analysis shows that there exists a positive association between automation and agricultural productivity whose variance explained is at 0.56 levels ($p < 0.05$). These findings are in concordance with prior works like Kaur et al. (2021) who proposed that the level of technology used determines a direct proportional relation with the level of agricultural yield. This understanding is taken forward in our study where we quantify the amount of variation in productivity attributed back to automation, giving more clarity about this effect. This result also supports the work done. who called on precision agriculture to improve 'yield density' through technology. they explained variance in productivity was moderate at 56%, implying that automation though a factor, is not the only reason, farmers' climate, soil health, and policy are other factors that determine success in agriculture.

It also established that automation had a positive impact on the operational cost ($F = 6.65$, $R^2 = 0.49$, $P < 0.05$). Prior researches (Faheem et al., 2024) have pointed out that automation cuts direct costs of labor while increasing operational productivity. other inputs such as labour and water request use results to high expenses due to the availability of machines and irrigation systems respectively. These conclusions are supported by our work, as they supply quantification of the savings realized by automating the process. Nonetheless, it is also important to know that the capital required to purchase and effectively use the automatic equipment is an enormous factor which is, according to experiences shared in this study, a problem for most small holding farmers. This also supports Gillingham et al. (2020) establishing that while in the long-run, the overall costs decrease, the initial cost of purchase and installation of the automated equipment remains a major discouragement, even in the developing regions where access to capital may be hard to come by.

The fact that there is variation in trend of agricultural efficiency at different levels of automation has also contributed further to the literature addressing the impacts of various degrees of automation in farming (Balafoutis et al., 2020). Higher automation farms produced more than lower automation farms; this is in congruence with Hansen et al. (2020) who noted that farms using fully automation systems tend to be more productive. While confirming these observations, the current research also extends them by considering low, medium, and high levels of automation. This integration is important in that it differentiates between the levels of the extent of automation and how farms may benefit from technologies at different levels.

The challenges identified in this study high initial costs, lack of technical expertise, and limited infrastructure are consistent with previous research on the barriers to automation adoption in agriculture. High initial costs remain a significant barrier to adoption, as automated systems require substantial investment, particularly for small-scale farmers. This issue was emphasized by studies such as that of Autio et al. (2021), who noted that financial constraints often limit the ability of farmers to invest in expensive technologies. The lack of technical expertise further complicates the implementation of automated systems, as farmers may struggle to effectively integrate and maintain these technologies. Addressing these challenges, the study suggests that targeted policies, such as subsidies or training programs, could facilitate greater adoption and make automation more accessible to a wider range of farmers.

The perceived benefits of automation, including improved productivity, labor cost reduction, and enhanced crop quality, reflect the consensus in the literature regarding the advantages of technological adoption. The high ratings for these benefits underscore the general recognition that automation can significantly enhance farming efficiency and output (Khaspuria et al., 2024). However, the results also highlight the importance of considering the specific context in which automation is adopted. Larger farms, particularly in urban regions with better infrastructure, appear to benefit more from automation than smaller farms in rural areas. This finding aligns with the work of Mhlanga (2021), who observed that access to infrastructure and capital significantly affects the ability to reap the full benefits of automation.

This study contributes new insights into how farm size and geographical location influence the adoption and outcomes of automation. Larger farms tend to experience more significant benefits from automation, as they have the financial and technical capacity to invest in and maintain advanced systems. This is consistent with the findings of Boda & Allam (2024), who suggested that large-scale operations are better positioned to adopt and leverage automation technologies. Additionally, farms in urban regions with better infrastructure reported higher efficiency, which echoes the work of Sukathong et al. (2021), who found that infrastructure quality plays a critical role in the success of technological adoption. These insights fill a gap in the literature by addressing the differential effects of automation adoption based on farm size and location.

CONCLUSION

This study provides valuable insights into the role of automation in improving agricultural efficiency, productivity, and cost savings, while also identifying key barriers to adoption, such as high initial costs and limited technical expertise. By exploring the relationship between automation and agricultural outcomes, the study expands on existing literature and highlights the need for targeted policies and infrastructure to support farmers, especially small-scale ones, in overcoming these challenges. Additionally, the findings underscore the differential impact of automation based on farm size and geographical location, offering a more nuanced understanding of how technological adoption can be tailored to different contexts. Ultimately, this study contributes to the growing body of knowledge on agricultural automation, offering practical implications for policymakers, researchers, and industry practitioners.

REFERENCES

Abd El-Ghany, N. M., Abd El-Aziz, S. E., & Marei, S. S. (2020). A review: application of remote sensing as a promising strategy for insect pests and diseases management. *Environmental Science and Pollution Research*, 27(27), 33503-33515. <https://doi.org/10.1007/s11356-020-09517-2>

Ahmad, T., & Zhang, D. (2021). Using the internet of things in smart energy systems and networks. *Sustainable Cities and Society*, 68, 102783. <https://doi.org/10.1016/j.scs.2021.102783>

Autio, A., Johansson, T., Motaroki, L., Minoia, P., & Pellikka, P. (2021). Constraints for adopting climate-smart agricultural practices among smallholder farmers in Southeast Kenya. *Agricultural Systems*, 194, 103284. <https://doi.org/10.1016/j.agsy.2021.103284>

Balafoutis, A. T., Evert, F. K. V., & Fountas, S. (2020). Smart farming technology trends: Economic and environmental effects, labor impact, and adoption readiness. *Agronomy*, 10(5), 743. <https://doi.org/10.3390/agronomy10050743>

Barrile, V., Simonetti, S., Citroni, R., Fotia, A., & Bilotta, G. (2022). Experimenting agriculture 4.0 with sensors: A data fusion approach between remote sensing, UAVs and self-driving tractors. *Sensors*, 22(20), 7910. <https://doi.org/10.3390/s22207910>

Boda, V. V. R., & Allam, H. (2024). The AI Revolution in Healthcare DevOps: What You Need to Know. *Innovative Engineering Sciences Journal*, 4(1).

Charania, I., & Li, X. (2020). Smart farming: Agriculture's shift from a labor intensive to technology native industry. *Internet of Things*, 9, 100142. <https://doi.org/10.1016/j.iot.2019.100142>

Christiaensen, L., Rutledge, Z., & Taylor, J. E. (2021). The future of work in agri-food. *Food Policy*, 99, 101963. <https://doi.org/10.1016/j.foodpol.2020.101963>

Faheem, M. A., Zafar, N., Kumar, P., Melon, M. M. H., Prince, N. U., & Al Mamun, M. A. (2024). AI and Robotic: About the Transformation Of Construction Industry Automation As Well As Labor Productivity. *Remittances Review*, 9, 871-888.

Gillingham, K. T., Knittel, C. R., Li, J., Ovaere, M., & Reguant, M. (2020). The short-run and long-run effects of Covid-19 on energy and the environment. *Joule*, 4(7), 1337-1341.

Gong, X., Wong, W. K., Peng, Y., Khamdamov, S. J., Albasher, G., Hoa, V. T., & Nhan, N. T. T. (2023). Exploring an interdisciplinary approach to sustainable economic development in resource-rich regions: An investigation of resource productivity, technological innovation, and ecosystem resilience. *Resources Policy*, 87, 104294. <https://doi.org/10.1016/j.resourpol.2023.104294>

Hansen, B. G., Bugge, C. T., & Skibrek, P. K. (2020). Automatic milking systems and farmer wellbeing—exploring the effects of automation and digitalization in dairy farming. *Journal of Rural Studies*, 80, 469-480.

He, L., & Chen, L. (2021). The incentive effects of different government subsidy policies on green buildings. *Renewable and Sustainable Energy Reviews*, 135, 110123.

Ivanov, S. H. (2021). Robonomics: The rise of the automated economy. *ROBONOMICS: The Journal of the Automated Economy*, 1(11).

Kaur, H., Ahsaan, S. U., Alankar, B., & Chang, V. (2021). A proposed sentiment analysis deep learning algorithm for analyzing COVID-19 tweets. *Information Systems Frontiers*, 23(6), 1417-1429. <https://doi.org/10.1007/s10796-021-10135-7>

Khaspuria, G., Khandelwal, A., Agarwal, M., Bafna, M., Yadav, R., & Yadav, A. (2024). Adoption of precision agriculture technologies among farmers: A comprehensive review. *Journal of Scientific Research and Reports*, 30(7), 671-686.

Khosravani, M. R., & Haghghi, A. (2022). Large-scale automated additive construction: overview, robotic solutions, sustainability, and future prospect. *Sustainability*, 14(15), 9782. <https://doi.org/10.3390/su14159782>

Kim, W. S., Lee, W. S., & Kim, Y. J. (2020). A review of the applications of the internet of things (IoT) for agricultural automation. *Journal of Biosystems Engineering*, 45, 385-400.

Mhlanga, D. (2021). Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies? *Sustainability*, 13(11), 5788.

Ng, K. K., Chen, C. H., Lee, C. K., Jiao, J. R., & Yang, Z. X. (2021). A systematic literature review on intelligent automation: Aligning concepts from theory, practice, and future perspectives. *Advanced Engineering Informatics*, 47, 101246.

Oláh, J., Aburumman, N., Popp, J., Khan, M. A., Haddad, H., & Kitukutha, N. (2020). Impact of Industry 4.0 on environmental sustainability. *Sustainability*, 12(11), 4674. <https://doi.org/10.3390/su12114674>

Oyugi, A. M., Kibet, J. K., & Adongo, J. O. (2021). A review of the health implications of heavy metals and pesticide residues on khat users. *Bulletin of the National Research Centre*, 45, 1-22. <https://doi.org/10.1186/s42269-021-00613-y>

Pawlak, K., & Kołodziejczak, M. (2020). The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. *Sustainability*, 12(13), 5488. <https://doi.org/10.3390/su12135488>

Shashkova, I. G., Romanova, L. V., Kupriyanova, M. V., & Cherkashina, L. V. (2022). The use of modern robotic systems in the agro-industrial complex. In *IOP Conference Series: Earth and Environmental Science* (Vol. 949, No. 1, p. 012024). IOP Publishing. <https://doi.org/10.1088/1755-1315/949/1/012024>

Sukathong, S., Suksawang, P., & Naenna, T. (2021). Analyzing the importance of critical success factors for the adoption of advanced manufacturing technologies. *International Journal of Engineering Business Management*, 13, 18479790211055057. <https://doi.org/10.1177/18479790211055057>

Taiebat, M., Brown, A. L., Safford, H. R., Qu, S., & Xu, M. (2018). A review on energy, environmental, and sustainability implications of connected and automated vehicles. *Environmental science & technology*, 52(20), 11449-11465.