Sentiment Analysis Towards Rohingya on Instagram Using Support Vector Machine Method
Keywords:
Sentiment Analysis, Support Vector Machine, Rohingya Crisis, Social MediaAbstract
Purpose: This study investigates the application of the Support Vector Machine (SVM) method for sentiment analysis of Instagram posts related to the Rohingya crisis. This study investigates the application of the Support Vector Machine (SVM) method for sentiment analysis of Instagram posts related to the Rohingya crisis. The primary aim was to assess the effectiveness of SVM in classifying sentiments expressed in social media content, particularly focusing on the emotional complexity and nuances inherent in such sensitive topics.
Subjects and Methods: Data were collected from Instagram posts using hashtags related to the Rohingya crisis, and the SVM model was applied to classify sentiments into categories such as positive, negative, and neutral.
Results: The results demonstrated that the SVM method outperformed traditional sentiment analysis techniques, achieving higher accuracy, precision, recall, and F1 scores. This suggests that machine learning techniques, specifically SVM, offer a more accurate and reliable approach for analyzing public opinion on social media platforms, which is crucial for shaping humanitarian discourse and policy.
Conclusions: Future research should consider the integration of deep learning models for further improvements in sentiment analysis performance.
References
Eskiyaturrofikoh, E., & Suryono, R. R. (2024). Analisis Sentimen Aplikasi X Pada Google Play Store Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine (SVM). JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 9(3), 1408-1419.
Gandhi, A., Adhvaryu, K., Poria, S., Cambria, E., & Hussain, A. (2023). Multimodal sentiment analysis: A systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. Information Fusion, 91, 424-444. https://doi.org/10.1016/j.inffus.2022.09.025
Hussain, S. F. (2019). A novel robust kernel for classifying high-dimensional data using Support Vector Machines. Expert Systems with Applications, 131, 116-131. https://doi.org/10.1016/j.eswa.2019.04.037
Khatun, A. (2024). Media, Propaganda, and the Othering Process of the Rohingyas. In Understanding the Rohingya Displacement: Security, Media, and Humanitarian Perspectives (pp. 169-199). Singapore: Springer Nature Singapore.
Obiedat, R., Qaddoura, R., Ala’M, A. Z., Al-Qaisi, L., Harfoushi, O., Alrefai, M. A., & Faris, H. (2022). Sentiment analysis of customers’ reviews using a hybrid evolutionary SVM-based approach in an imbalanced data distribution. IEEE Access, 10, 22260-22273. https://doi.org/10.1109/ACCESS.2022.3149482
Pahtoni, T. Y., & Jati, H. (2024). Analisis Sentimen Data Twitter Terkait Chatgpt Menggunakan Orange Data Mining. Jurnal Teknologi Informasi dan Ilmu Komputer, 11(2), 329-336.
Saputra, D. A. (2022). Responsivitas Pengguna Internet Terhadap Kebijakan Ppkm Level Melalui Pendekatan Analisis Sentimen Di Media Sosial. Universitas Lampung.
Septiawan, Y., & Chairani, C. (2023). Perbandingan Akurasi Metode Deteksi Ujaran Kebencian dalam Postingan Twitter Menggunakan Metode SVM dan Decision Trees yang Dioptimalkan dengan Adaboost. TEKNIKA: Jurnal Ilmiah Bidang Ilmu Rekayasa, 17(2), 287-299.
Sharma, N. A., Ali, A. S., & Kabir, M. A. (2024). A review of sentiment analysis: tasks, applications, and deep learning techniques. International Journal of Data Science and Analytics, 1-38.
Wankhade, M., Annavarapu, C. S. R., & Abraham, A. (2024). CBMAFM: CNN-BiLSTM multi-attention fusion mechanism for sentiment classification. Multimedia Tools and Applications, 83(17), 51755-51786.
Wibowo, A. (2023). Strategi Pemasaran Digital B2B. Penerbit Yayasan Prima Agus Teknik, 1-215.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Agrocomplex and Engineering

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.