Sentiment Analysis Towards Rohingya on Instagram Using Support Vector Machine Method
Keywords:
Sentiment Analysis , Support Vector Machine , Rohingya Crisis , Social MediaAbstract
Purpose: This study investigates the application of the Support Vector Machine (SVM) method for sentiment analysis of Instagram posts related to the Rohingya crisis. This study investigates the application of the Support Vector Machine (SVM) method for sentiment analysis of Instagram posts related to the Rohingya crisis. The primary aim was to assess the effectiveness of SVM in classifying sentiments expressed in social media content, particularly focusing on the emotional complexity and nuances inherent in such sensitive topics.
Subjects and Methods: Data were collected from Instagram posts using hashtags related to the Rohingya crisis, and the SVM model was applied to classify sentiments into categories such as positive, negative, and neutral.
Results: The results demonstrated that the SVM method outperformed traditional sentiment analysis techniques, achieving higher accuracy, precision, recall, and F1 scores. This suggests that machine learning techniques, specifically SVM, offer a more accurate and reliable approach for analyzing public opinion on social media platforms, which is crucial for shaping humanitarian discourse and policy.
Conclusions: Future research should consider the integration of deep learning models for further improvements in sentiment analysis performance.
References
Alahmadi, K., Alharbi, S., Chen, J., & Wang, X. (2025). Generalizing sentiment analysis: a review of progress, challenges, and emerging directions. Social Network Analysis and Mining, 15(1), 1-28.
AlBadani, B., Shi, R., & Dong, J. (2022). A novel machine learning approach for sentiment analysis on Twitter incorporating the universal language model fine-tuning and SVM. Applied System Innovation, 5(1), 13. https://doi.org/10.3390/asi5010013
Ansar, A., & Maitra, J. (2024). Digital diaspora activism at the margins: Unfolding rohingya diaspora interactions on facebook (2017–2022). Social Media+ Society, 10(1), 20563051241228603. https://doi.org/10.1177/20563051241228603
Aziz, A. (2024). Rohingya diaspora online: Mapping the spaces of visibility, resistance and transnational identity on social media. new media & society, 26(9), 5219-5239. https://doi.org/10.1177/14614448221132241
Bacevicius, M., & Paulauskaite-Taraseviciene, A. (2023). Machine learning algorithms for raw and unbalanced intrusion detection data in a multi-class classification problem. Applied Sciences, 13(12), 7328. https://doi.org/10.3390/app13127328
Bai, X. (2011). Predicting consumer sentiments from online text. Decision Support Systems, 50(4), 732-742. https://doi.org/10.1016/j.dss.2010.08.024
Bhamare, D., & Suryawanshi, P. (2018). Review on reliable pattern recognition with machine learning techniques. Fuzzy Information and Engineering, 10(3), 362-377. https://doi.org/10.1080/16168658.2019.1611030
de Las Heras-Pedrosa, C., Sánchez-Núñez, P., & Peláez, J. I. (2020). Sentiment analysis and emotion understanding during the COVID-19 pandemic in Spain and its impact on digital ecosystems. International journal of environmental research and public health, 17(15), 5542. https://doi.org/10.3390/ijerph17155542
Eskiyaturrofikoh, E., & Suryono, R. R. (2024). Analisis Sentimen Aplikasi X Pada Google Play Store Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine (SVM). JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 9(3), 1408-1419. https://doi.org/10.29100/jipi.v9i3.5392
Gandhi, A., Adhvaryu, K., Poria, S., Cambria, E., & Hussain, A. (2023). Multimodal sentiment analysis: A systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. Information Fusion, 91, 424-444. https://doi.org/10.1016/j.inffus.2022.09.025
Hussain, S. F. (2019). A novel robust kernel for classifying high-dimensional data using Support Vector Machines. Expert Systems with Applications, 131, 116-131. https://doi.org/10.1016/j.eswa.2019.04.037
Khatun, A. (2024). Media, Propaganda, and the Othering Process of the Rohingyas. In Understanding the Rohingya Displacement: Security, Media, and Humanitarian Perspectives (pp. 169-199). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-1424-7_11
Lin, H. Y. (2012). Efficient classifiers for multi-class classification problems. Decision Support Systems, 53(3), 473-481. https://doi.org/10.1016/j.dss.2012.02.014
Martinović, M., Dokic, K., & Pudić, D. (2025). Comparative Analysis of Machine Learning Models for Predicting Innovation Outcomes: An Applied AI Approach. Applied Sciences, 15(7), 3636. https://doi.org/10.3390/app15073636
Montoyo, A., Martínez-Barco, P., & Balahur, A. (2012). Subjectivity and sentiment analysis: An overview of the current state of the area and envisaged developments. Decision Support Systems, 53(4), 675-679. https://doi.org/10.1016/j.dss.2012.05.022
Obiedat, R., Qaddoura, R., Ala’M, A. Z., Al-Qaisi, L., Harfoushi, O., Alrefai, M. A., & Faris, H. (2022). Sentiment analysis of customers’ reviews using a hybrid evolutionary SVM-based approach in an imbalanced data distribution. IEEE Access, 10, 22260-22273. https://doi.org/10.1109/ACCESS.2022.3149482
Obiedat, R., Qaddoura, R., Ala’M, A. Z., Al-Qaisi, L., Harfoushi, O., Alrefai, M. A., & Faris, H. (2022). Sentiment analysis of customers’ reviews using a hybrid evolutionary SVM-based approach in an imbalanced data distribution. Ieee Access, 10, 22260-22273. https://doi.org/10.1109/ACCESS.2022.3149482
Pahtoni, T. Y., & Jati, H. (2024). Analisis Sentimen Data Twitter Terkait Chatgpt Menggunakan Orange Data Mining. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(2), 329-336. https://doi.org/10.25126/jtiik.20241127276
Sharma, N. A., Ali, A. S., & Kabir, M. A. (2025). A review of sentiment analysis: tasks, applications, and deep learning techniques. International journal of data science and analytics, 19(3), 351-388. https://doi.org/10.1007/s41060-024-00594-x
Siddiquee, M. A. (2020). The portrayal of the Rohingya genocide and refugee crisis in the age of post-truth politics. Asian Journal of Comparative Politics, 5(2), 89-103. https://doi.org/10.1177/2057891119864454
Singh, G. A. P., & Gupta, P. K. (2019). Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans. Neural Computing and Applications, 31(10), 6863-6877. https://doi.org/10.1007/s00521-018-3518-x
Wankhade, M., Annavarapu, C. S. R., & Abraham, A. (2024). CBMAFM: CNN-BiLSTM multi-attention fusion mechanism for sentiment classification. Multimedia Tools and Applications, 83(17), 51755-51786. https://doi.org/10.1007/s11042-023-17437-9
Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780. https://doi.org/10.1007/s10462-022-10144-1
Wibowo, A. (2023). Strategi Pemasaran Digital B2B. Penerbit Yayasan Prima Agus Teknik, 1-215.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Agrocomplex and Engineering

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
